
SMILE: Simulator for Maryland Imitation Learning
Environment

Technical Report CS-TR-5049

May 2016

Di-Wei Huang1∗, Garrett E. Katz1, Rodolphe J. Gentili2, and James A. Reggia1,3

1Department of Computer Science, 2Department of Kinesiology, 3UMIACS
University of Maryland, College Park, MD 20742

Abstract

As robot imitation learning is beginning to replace conventional hand-coded approaches in
programming robot behaviors, much work is focusing on learning from the actions of demonstra-
tors. We hypothesize that in many situations, procedural tasks can be learned more effectively
by observing object behaviors while completely ignoring the demonstrator’s motions. To support
studying this hypothesis and robot imitation learning in general, we built a software system
named smile that is a simulated 3D environment. In this virtual environment, both a simulated
robot and a user-controlled demonstrator can manipulate various objects on a tabletop. The
demonstrator is not embodied in smile, and therefore a recorded demonstration appears as
if the objects move on their own. In addition to recording demonstrations, smile also allows
programing the simulated robot via Matlab scripts, as well as creating highly customizable
objects for task scenarios via XML. This report describes the features and usages of smile.

Acknowledgements: This work was supported by ONR award N000141310597. We thank
John Purtilo and Charmi Patel for assistance in the implementation of smile. This report is
an update for CS-TR-5039 published in June 2014.

∗Email: dwh@cs.umd.edu

mailto:dwh@cs.umd.edu

Contents

1 Introduction 1

2 Getting started 3
2.1 Prerequisites . 3
2.2 Files . 4
2.3 Starting and stopping . 4
2.4 The main screen . 5

3 Camera navigation 6

4 Demonstration interface 7
4.1 Recording a demonstration . 7
4.2 Grasping and releasing . 10
4.3 Moving and rotation . 11
4.4 Other actions . 11

5 Robot interface 12
5.1 Manual control . 14
5.2 Matlab scripting . 14

6 Object interface 17
6.1 Simple objects . 18
6.2 Composite objects . 22
6.3 Physics constraints . 23
6.4 Controls . 25
6.5 Importing other XML files . 30
6.6 Object templates and instances . 32

7 Conclusion 34

Bibliography 34

ii

1 Introduction

Robot programming by demonstration, or imitation learning, refers to the notion that a robot
can autonomously learn sequences of actions to accomplish a task that is demonstrated by a
human. Imitation learning is widely considered as a potential replacement for the more conventional
pre-programming approach, which is difficult and expensive, and does not generalize well to even
moderately altered tasks or initial conditions. However, there is currently no consensus regarding
the most effective way to represent demonstrations for robot learning.

A popular method is to represent a demonstration as a sequence of human motion trajec-
tories. This method typically involves a human physically demonstrating a task, during which
the demonstrator motions are recorded. Although this method makes it intuitive for the human
to demonstrate, processing and learning from demonstrator’s trajectories is generally hard. For
example, sensing or recording human motions usually requires special hardware, and the recorded
trajectories are typically noisy and ambiguous. Complex processing may be needed to transform
coordinates, to segment, and to classify the trajectories. Also, the robot may not be able to follow
human trajectories due to distinct limb/body configurations/capabilities (e.g., sizes of limbs, ranges
of joint rotations, etc.). More importantly, blindly reproducing human trajectories is unlikely to
achieve the same effects in the task space as done by the human demonstrator, and inferring the
effects achieved by the demonstrator’s motion trajectories is difficult.

Since processing human motions is hard, we propose to consider an alternative where the
demonstrator is made invisible to the robot during a demonstration, according to our virtual
demonstrator hypothesis (Huang et al., 2015a,b). The rationale is that critical information about a
procedural task is likely to lie in the behaviors of objects being manipulated rather than those of the
demonstrator, and therefore an imitation learner can be substantially simplified and simultaneously
made more powerful by not seeing the demonstrator. As such, learning can be focused entirely on
the consequences of the demonstrator’s manipulative movements in the task/object space.

Our software, smile (Simulator for Maryland Imitation Learning Environment), is built to
support studies of robot imitation learning based on the virtual demonstrator hypothesis. smile
provides a simulated 3D environment, in which a virtual (invisible) demonstrator, a robot, a tabletop,
and a variety of task-related objects coexist. An example view of smile is shown in Figure 1.
smile also incorporates simulated physics such as gravity, rigid body collisions, and center of
mass representation. SMILE has recently been used successfully as the basis for developing a new
approach to imitation learning that is based on cause-effect reasoning (Katz et al., 2016).

There are several advantages of using a simulated environment over the physical environment.
A major advantage is that it is easy to manipulate the visual appearances of the environment, such
as hiding the demonstrator from the robot and intentionally simplifying visual properties (e.g.,
lighting casts no shadows). The latter is to drive the efforts away from low-level image processing
and towards developing a high-level cognitive framework that learns generalized task procedures.
Also, demonstrations can be recorded in the simulated environment using commodity computer
hardware without special equipment (e.g., motion trackers), and it can be easily operated by one
person alone. Demonstrating in the simulated environment can reduce human risks and fatigue,
and avoid extreme emotional responses (e.g., dangerous tasks). Additionally, object states such as
locations can be tracked very precisely in the simulated environment, and they can be optionally
furnished to a recorded demonstration to help learning. The simulated robot can be used to validate
imitation learning ideas in an inexpensive way, without damaging a physical robot or even without
owning a physical robot. Moreover, using the simulated environment enables demonstrating tasks
in extreme scales that are otherwise too big or too small for humans to physically demonstrate (e.g.,
nanorobotics).

1

Figure 1: An example view of smile.

Figure 2 shows the three interfaces with which a user can interact with smile. First, the
demonstration interface is provided for a human demonstrator to manipulate the objects through
intuitive GUI controls using mouse inputs (Figure 2(a)). A demonstration containing multiple object
manipulations can be recorded as a “video” (a sequence of images) with optional text description for
training the robot. A demonstration can be edited by undoing unwanted actions. The demonstrator
is not embodied (i.e., invisible, hence the name “virtual demonstrator”) in the simulated world,
and therefore the robot learner can bypass difficult human trajectory processing. From the robot’s
perspective, the objects in the environment move on their own.

Second, the robot interface allows custom Matlab scripts to control the simulated robot in
smile (Figure 2(b)). The robot is modeled after Baxterr, a bimanual robot produced by Rethink
Robotics†. Each arm of the simulated robot has 7 joints and a gripper, which can interact with
objects in the environment. A camera is mounted on the head of the robot that captures sequences of
images about the environment, including the objects in the environment, the demonstrator’s object
manipulations, and the robot’s own movements. These images, along with the robot’s proprioceptive
information such as joint angles, are sent as sensory inputs to the Matlab scripts that implement
the robot’s behaviors. Upon receiving these inputs, the Matlab scripts can optionally specify motor
commands, such as rotating certain arm joints, to affect the state of the robot, which may in turn
affect the states of the objects (e.g., moving a robot arm to push an object away).

Third, the object interface initializes objects in smile using XML (Figure 2(c)). This interface
accepts XML files specifying what objects (e.g., shape, color, etc.) to create in the simulated
environment as well as their initial states (e.g., locations, orientations, etc.). This interface provides
a way to generate a predefined set of objects that forms a task scenario for the demonstrator or

†http://www.rethinkrobotics.com/products/baxter/

2

http://www.rethinkrobotics.com/products/baxter/

Figure 2: The three primary interfaces of smile: (a) the demonstration interface, (b) the robot
interface, and (c) the object interface.

the robot to work on. An advantage for conducting controlled experiments is that, by loading the
same XML file, this interface guarantees that objects’ initial states are fixed exactly across different
experiment groups/trials. This would be more difficult to achieve in the physical environment.

The three interfaces described above can be used together or separately for different purposes.
A few possibilities are described as follows, although they are not intended to be exhaustive. First,
without using the robot interface, one can use smile as a standalone demonstration recorder.
The recorded demonstration can then be used to train either the simulated robot in smile or
a physical robot. Second, one can use smile as a standalone robot simulator (i.e., leaving out
demonstration interface). Controlling the simulated robot is relatively easy and without complicated
setup compared with existing solutions such as ROS/Gazebo, and therefore it is well-suited for
fast-prototyping robot controllers or for educational purposes. Third, one can use smile to study
the scenario where a robot and a human are to cooperate to complete a task (human-robot teaming),
since both the robot and the user can manipulate objects in smile. Finally, smile can support
active learning where a robot queries user demonstration using the object interface. For example,
when a robot (physical or simulated) does not know how to proceed during a task performance, it
can reconstruct the state of the environment in smile using an XML structure and ask for human
demonstration.

2 Getting started

smile can be run on OS X, Windows, and Linux. Systems with dedicated graphics chips are
preferred but not required. This section explains basic operations of smile.

2.1 Prerequisites

Before using smile, check your system for the following dependencies:

â Java Runtime Environment (JRE) is required to run smile. Version 1.7 is preferred,
although older versions such as 1.6 or 1.5 may work too.

â Matlab is required to run robot control scripts in smile, but is not required to run smile
itself. Versions R2007b and greater are supported.

3

Figure 3: The display settings dialog

2.2 Files

The files extracted from the distributed zip archive should be placed in a single directory. The
essential files and their purposes are:

â SMILE.jar – main program.

â lib/ – directory containing libraries (*.jar) required for running smile. Normally, it is not
necessary to make any changes to this directory.

â matlab/ – directory where Matlab scripts for robot control should be stored.

â matlab/agentBehavior.m – script specifying which Matlab scripts for robot control are to
be run by smile. See Section 5.2.

â tablesetup/ – directory where XML files for initializing objects in the environment should
be stored.

â tablesetup/schema/deep.xsd and tablesetup/schema/deep.xsd – schema files required
to parse XML documents. In most cases, no changes to these two files are necessary.

The directories matlab/ and tablesetup/ also contain a few examples.

2.3 Starting and stopping

To start smile, run SMILE.jar by double clicking the file. Alternatively, use a command line
interface and type: java -jar SMILE.jar to run. The latter provides full debug messages in the
console. A display settings dialog will then appear (Figure 3). The options are explained below:

â Screen Resolution specifies the size of the main screen in pixels. Higher resolutions provide
a finer view of the simulated world. A resolution of 1024 × 768 and higher is recommended.

â Refresh Rate sets the number of video frames to be rendered per second. A value of 60
frames per second (FPS), if available, is highly recommended.

â Color Depth sets the number of bits used to represent a color. Using the default value works
fine in most cases.

4

Figure 4: The main screen of smile gives a modifiable view of the simulated 3D world and overlaid
GUI components. The GUI components include (a) a status window, (b) a button for showing all
windows, (c) buttons for showing individual windows, (d) a button for aligning all visible windows,
and (e) a button for hiding all windows.

â Anti-Aliasing sets the extent to which pixelation and jagged edges are eliminated. A value
of 2x is recommended.

Pressing the Continue button will launch the main screen. In general, setting higher values for the
above options yields better picture quality but takes more CPU/GPU resources. If a system cannot
satisfy option values set by the user, a significant drop of frame rate will occur, e.g., dropping far
below 60 FPS. The current frame rate is shown in the Status window (see Figure 4). If this happens,
consider decreasing some option values, starting with screen resolution. Restart smile to change
any display settings.

To quit smile, press Esc anytime in the main window.

2.4 The main screen

Figure 4 shows the main screen, which consists of a simulated 3D world and several overlaid GUI
components. The simulated world contains a white tabletop in front of a black background. Two
blocks are initially placed on the tabletop in this example. This initial scenario is specified in
tablesetup/default.xml (see Section 6). A window showing system status is initially located at

5

Figure 5: The coordinate system. The origin is located at the center of the tabletop. The XY plane
is on the tabletop surface. The Z axis is perpendicular to the tabletop.

the top-left corner (Figure 4(a)). All windows like this can be moved by dragging their title bar and
hidden by clicking the × button at their top-right corner. An array of buttons at the bottom of
the main view (Figure 4(b)–(e)) can be used to: (b) show all windows, (c) show a specific window,
(d) align all visible windows and place them at the left border of the main view, and (e) hide all
windows.

A 3D cartesian coordinate system (X, Y, Z) is used in the simulated environment (Figure 5).
The origin is located at the center of the tabletop surface. The XY plane is horizontal. The tabletop
surface lies on the XY plane. From the initial view of the user, and from the robot’s view as well, X
increases from left to right, Y increases from near to far, and Z increases vertically from low to high.
A unit of length in the simulated world corresponds to 10 cm in the real world, while a unit of mass
corresponds to 1 kg.

Pressing Space anytime will pause the simulation. Pressing Space again will
resume simulation. When smile is running, usually a large amount of CPU resources is consumed.
Pausing smile helps reduce the amount taken by smile, especially when the main window loses
focus. This is useful when the user needs to run another CPU-intensive job while retaining the state
of smile.

3 Camera navigation

The camera navigation window (Figure 6) can be used to change the user’s viewing position and
direction in the simulated world. To locate the window, click the Camera button at the bottom of
the screen.

Dragging the mouse cursor anywhere in the gray area on the left side of the window moves the
user’s viewing position. Dragging upward moves the viewing position forward, dragging downward
moves it backwards, and dragging left or right moves it sideways. A longer dragging distance moves
the viewing position at a higher speed. The Asc and Dsc buttons raise and lower the viewing
position vertically. Similarly, to change the viewing direction, drag the mouse cursor anywhere in
the gray area on the right side of the window. The viewing direction is then rotated in the direction
dragged. The dragging distance determines the speed of rotation.

6

Figure 6: The Camera window that allows the user to navigate in the 3D simulated world.

Keyboard shortcuts: W S A D move the viewing position forward, backward, left, and
right, respectively; Q Z raise and lower the viewing position; rotate the viewing
direction.

4 Demonstration interface

With the interface described in this section, a user can demonstrate a task by manipulating objects
on the tabletop in the simulated world. The user, or the demonstrator, is not embodied in the
simulated world, and thus the result of a demonstration, as observed by the robot, is a sequence
of object movements and rotations. A demonstration can be recorded and saved as a “video” (a
sequence of images captured by the robot head camera), as well as text descriptions. The recorded
demonstration can be used for imitation learning. In the situation where the demonstrator makes
an unwanted move, smile provides an “undo” function to restore a previous state.

The demonstrator is equipped with two manipulators, or “hands”, which can simultaneously
manipulate two objects. Each hand can manipulate an object using grasp, move, rotate, release
actions, etc. A typical flow chart for one hand is shown in Figure 7. A manipulation starts at a
free hand grasping an object, triggering a control, or pointing to an object (or a part of an object).
When an object is grasped, it is temporarily unaffected by gravity, i.e., it is held by an invisible
hand. The object then undergoes a series of movements and/or rotations. Finally, when the object
has been moved to a desired destination and rotated to a desired orientation, it can then be released.
The object resumes being affected by gravity after it is released. Alternatively, the object can be
destroyed (removed from the environment). The demonstrator can switch between the two hands
while manipulating objects. When the demonstrator is operating one hand, the state of the other
hand remains unchanged (unless the hand grasps the object held by the other hand, in which case a
handoff is achieved). To manipulate two objects in parallel, the demonstrator needs to manually
interleave the manipulative actions of the two hands.

Figure 8 shows the interface for demonstrations. The following subsections explain how demon-
stration recording and manipulations are done using the GUI. To generate randomly located objects
for practicing demonstration, see Section 6 (or simply press B or N).

4.1 Recording a demonstration

Using the Start and Finish buttons in the Demonstration Tools window (Figure 8(f)) to record a
demonstration. Pressing the Start button will start saving demonstration actions to a subdirectory
named demo/. The recorded demonstration is segmented in a way that every grasp and release
action triggers creation of a new segment. Pressing the Finish button will stop recording, after
which the user may want to rename the demo/ subdirectory since pressing Start again will overwrite

7

Figure 7: A typical demonstration flow. The demonstrator can grasp an object, move/rotate it until
the object is at a desired location with a desired orientation, and release it. Repeat this process
with different objects to complete the task being demonstrated.

the content of demo/. Anytime during a recording, the demonstrator can press the Undo button
to discard the current segment. In this case, the state of the environment will be restored to the
previous state accordingly.

The recording captures 4 images, or frames, per second from the robot head camera, where each
image is given a consecutive frame number starting from 0. Note that if the states (e.g., location) of
objects in the environment have not changed since the last frame, the image file of this frame is
not generated (to save storage space), although the frame number keeps increasing to reflect the
passing of time. The image files are grouped and placed in subdirectories corresponding to their
segments, which are again numbered consecutively starting from 0. For example, the images of the
first segment are stored in demo/0/. Along with the image files, an accompanying text file is also
created for each segment that symbolically describes what happens in the environment. The text
file is in CSV format, where each line represents an event. The first value of each line indicates
the frame number in which the event occurs. The second value indicates the type of the event, as
follows:

â create. This event is generated whenever a new object is created in the environment. In
this case, the third value of the line indicates the ID of the object being created. Object
IDs can be specified using the object interface (via XML, see Section 6.1). User-specified
IDs may be automatically appended a ’#’ character followed by a number to ensure their
uniqueness. From the fourth value on is a list of key-value pairs indicating the properties of
the object. For example, to indicate that the shape of the object is a cylinder, the fourth
value can be a string shape, and the fifth value can be a string cylinder. Other properties
of the object may appear after the shape property. The number of object properties is not
limited. Object properties can be specified using the object interface (see Section 6.1 for XML
element <description/>).

â delete. This event is generated whenever an object is removed from the environment. In
this case, the third value indicates the ID of the object removed.

8

Figure 8: The demonstration interface. The red block (right) is currently grasped by the demonstrator
and raised above the tabletop. (a) The radio button controlling which hand is currently in use. (b)
The ID of the grasped object. (c) The buttons for releasing and removing a grasped object. (d) The
buttons for rotating the vertical plane (shown in transparent blue color) on which the movement of
the grasped object is restricted. (e) The sliders for rotating the object around three orthogonal axes.
(f) The buttons controlling the recording of demonstration videos. (g) The intersections between
the vertical plane restricting object movements and the tabletop. The intersections visualize the
horizontal path along which the object is moving during the current operation. (h) The three
rotation axes for the grasped object. They are colored in accordance to the sliders in (e). (i) The
vertical projection cast from the center of the grasped object to the tabletop. It visualizes the
current XY location of the grasped object (virtual shadow).

9

â move. This event indicates the change in location or orientation of an object. In this case,
the third value indicates the ID of the object. The next three values indicate the X, Y, and
Z coordinates of the object’s new location, followed by three values indicating the object’s
rotation along the X, Y, and Z axes (in that order).

â grasp. This event indicates that the demonstrator grasps an object. In this case, the third
value contains the name of the hand being used: LeftHand, RightHand, BothHands, or
AnyHand. The fourth value contains the ID of the object grasped.

â release. This event indicates that the demonstrator releases a grasped object. In this case,
the third value contains the name of the hand released.

â destroy. This event indicates that the demonstrator destroys a grasped object. In this case,
the third value contains the name of the hand used to destroy the object. A corresponding
delete event will also be generated.

â initializeControl. This event indicates that a control (e.g., a toggle switch) is initialized,
often immediately following the create events. In this case, the third value indicates the
ID of the control. Like object IDs, control IDs can be specified using the object interface
and are guaranteed to be unique. The fourth value indicates the type of the control, such as
toggleSwitch and indicatorLights (see Section 6.4). The fifth value indicates the ID of
the object that this control is a part of. It is possible that a control is itself an object, in which
case this value would be the same as the third value. The sixth value indicates the initial
state of the control, represented as an integer or a string. For example, a toggle switch can be
in state 0 or 1 depending on which side of the switch is pressed down. A string representation
of control state can also be specified using the object interface (see Section 6.4 for element
<state/> under <indicatorLights/>).

â changeControlState. This event indicates the change of a control’s state. In this case, the
third value indicates the ID of the control. The fourth value is a string or integer representing
the state (see initializeControl event).

â trigger. This event indicates that the demonstrator triggers the state change of a control,
such as toggling a switch control. In this case, the third value indicates the name of the hand
being used. The fourth value indicates the control ID.

â pointTo. This event indicates that the demonstrator points to an object or a part of an
object. In this case, the third value indicates the name of the hand being used. The fourth
value indicates the ID of the object or the part of an object being pointed to. Like object IDs,
the IDs of object parts that can be pointed to are guaranteed to be unique. The fifth value
indicates the ID of the object containing the part being pointed to. If a whole object is pointed
to, the fourth and fifth values will be identical. By default, all objects can be pointed to. To
enable pointing to a part of an object, this part has to be explicitly marked as “pointable”
using the object interface (see Section 6.2 for XML attribute pointable).

4.2 Grasping and releasing

To grasp an object, first select a hand using the radio buttons in the Demonstration Tools window
(Figure 8(a)), and then simply click on the object. The name of the grasped object will appear
(Figure 8(b)), and the object itself will be highlighted by black outlines, a plane to guide movements
(Figure 8(g)), and axes to guide rotations (Figure 8(h)). In the situation depicted in Figure 8, the

10

red block (the one on the right) is being grasped. The demonstrator may then move or rotate the
grasped object (explained in the next subsection), or switch to using the other hand (by clicking the
corresponding radio buttons) to perform other manipulations. To release an object being grasped,
first switch to the hand that is holding the object. The object will be highlighted only if the
demonstrator switches to the hand that is holding the object. The demonstrator can either click
the Release button (Figure 8(c)) or simply click anywhere other than the grasped object. The
demonstrator can also click the Destroy button to remove the grasped object from the environment.

4.3 Moving and rotation

To move a grasped object, simply drag it with the mouse cursor. The movement is restricted on a
plane perpendicular to the tabletop. The plane is visualized as a transparent blue sheet. Notice
where the plane intersects the tabletop and other objects (Figure 8(g)). The intersection indicates a
potential “fly by” path for the object being dragged by the demonstrator. Locations along the path
are possible destinations where the demonstrator can place the object. For example, in Figure 8,
since the plane for moving the red block (the one on the right) intersects the green block (the
one on the left), it is possible to place the red block on top of the green block. The plane can be
rotated around a vertical axis using the CCW (for counterclockwise rotation) and CW (for clockwise
rotation) buttons in Figure 8(d). It is advisable to rotate the plane until a desired destination
intersects the plane before dragging the object. (Keyboard shortcuts: / and Shift + / rotate the
plane in one direction or the other; holding Ctrl instantly rotates the plane 90 degrees.)

To rotate the grasped object, first notice that there are three orthogonal axes colored in red,
green, and blue in Figure 8(h). They are the axes around which the object can be rotated. Use the
sliders in Figure 8(e), which are colored in accordance with the axes, to rotate the object around
the corresponding axes. The angles of rotations are shown on the right side of the sliders. Drag the
knob on a slider to arbitrarily adjust the rotational angle. Alternatively, click the button at either
end of a slider to increase or decrease the angle by 1 degree, or click on the slider track to increase
or decrease the angle by 45 degrees. The range of rotation is between -180 and 180 degrees.

The blue axis (the vertical one) also serves as a “virtual shadow” of the selected object (Fig-
ure 8(i)), which is a vertical projection of the object’s 3D location. It indicates the horizontal
location of the object’s center when projected vertically onto the tabletop (or other objects).

4.4 Other actions

To virtually point at an object or a specific part of an object, right-click (secondary click) on it.
This allows the demonstrator to provide a cue to direct the attention of the robot learner or to
explain a demonstrated action in a non-verbal way. For example, the demonstrator can point to
an indicator light before flipping a switch to turn it off. This signifies that the purpose of flipping
the switch is to turn that light off. Without pointing to the indicator light, the purpose of flipping
the switch is somewhat ambiguous. The pointing action can also be used to communicate where to
hold an object, such as pointing to the handle of a drawer before pulling it open. Since pointing
actions do not cause object states to change, they are not observable in the recorded visual images.
However, pointTo events will be generated in the text description of the demonstration. All objects
can be pointed to by default. Parts of an object can be pointed to if they are explicitly declared so
via the object interface (see Section 6.2 for XML attribute pointable).

Right-clicking on a control object causes the control to be manually “triggered”, meaning that
the state of the control is changed. For example, one can right-click on a toggle switch to flip it
to the other position. A triggered control may in turn trigger other controls in the environment,

11

Figure 9: The robot in the simulated world. (a) The 3D model of the robot. (b) The robot’s view
of the simulated world. The images are captured by its head-mounted virtual camera. (c) GUI
components for manually controlling the robot.

depending on how their relationship is defined using the object interface (see Section 6.4 for XML
element <downstream/>). Unlike the pointing to action above, triggering a control is usually visible
in recorded visual images, such as the change of switch toggle positions, the change of indicator light
colors, etc. For each trigger action, a trigger event will be generated in the demonstration text
descriptions. Additionally, one or more changeControlState events will be generated for those
control whose states are directly or indirectly affected by this trigger action.

Finally, a grasped object can be destroyed by clicking the destroy button in the Demonstration
Tools window. This will remove the object from the environment.

5 Robot interface

This section describes the simulated robot and how its states can be affected/controlled either
manually or using Matlab scripts. This interface, corresponding to Figure 2(b), is intended to be
used by software developers to implement the robot’s cognitive controller.

In the Robot window (Figure 9; press the Robot button at the bottom of the screen to show this

12

Table 1: The ranges of the robot’s joint angles (in radians).

Joint Angle range Joint Angle range

S0 -1.7 – 1.7 W0 -3.059 – 3.059
S1 -2.147 – 1.047 W1 -π/2 – 2.094
E0 -3.054 – 3.054 W2 -3.059 – 3.059
E1 -0.050 – 2.618 H0 -π/2 – π/2

Figure 10: (a) The top view of a gripper attempting to grasp an object. A and B are the contact
points between the object and the two digits of the gripper. BC is a line perpendicular to the inner
surfaces of the gripper. If θ is sufficiently small, the block is considered being held by the gripper.
(b) The 3D view of a gripper holding an object.

window), the Show/Hide button toggles the visibility of the robot (Figure 9(a)). It is recommended
to hide the robot temporarily while a demonstration is in progress, because the robot may block the
demonstrator’s view, and because rendering the robot serves no purposes during demonstrations.
The robot can still observe the demonstration when invisible. On the other hand, whenever the
robot needs to interact with the environment, it has to be visible. The Head View button in the
Robot window toggles the display of the robot’s vision. The robot “sees” the environment through
its head-mounted camera. The environment as seen by the robot is displayed in a picture-in-picture
style at the lower right corner (Figure 9(b)). (Keyboard shortcuts: R to show/hide the robot; 1

to toggle the robot’s view; 2 to save the robot’s view as an image file.)
The simulated robot is modeled after Baxterr, a commercial bimanual robot. Each arm consists

of 7 joints: S0, S1, E0, E1, W0, W1, and W2‡. Joints S0 and S1 are located at the “shoulder”,
joints E0 and E1 are at the “elbow”, and joints W0, W1, and W2 are at the “wrist”. Additionally,
a head joint H0 allows the robot’s head, together with the virtual camera mounted on it, to pan
horizontally. The robot’s field of view (Figure 9(b)) is updated according to H0. The 3D model and
the arm configurations of the robot are extracted from data released by the manufacturer§. The
ranges of the joint angles are listed in Table 1 for reference.

A gripper is attached at the end of each arm. The distance between the two digits of a gripper
can be widened or narrowed, so the gripper can hold or release objects. The maximum inner distance

‡For more information, see http://sdk.rethinkrobotics.com/wiki/Joint_Position_Example
§https://github.com/RethinkRobotics/

13

http://sdk.rethinkrobotics.com/wiki/Joint_Position_Example
https://github.com/RethinkRobotics/

between the two digits is 2 units (corresponding to 20 cm). When both of the digits are in contact
with the same object while the gripper is closing, a test depicted in Figure 10(a) is performed to
determine if the grip is successful. A and B are the contact points, and θ is the angle between
AB and BC, which is a line perpendicular to the contact surfaces on the two digits. The grip is
successful if θ < π/16. If the grip is successful, the object is considered being held by the gripper.
When a gripper opens, all objects being held by it are released.

In the following subsections, two methods of controlling the robot are discussed. The manual
control method serves mainly debugging purposes, which allows developers of the robot controller
to directly alter joint angles of the robot through GUI. The Matlab scripting method provides a
programmatic way of implementing the robot’s behaviors.

5.1 Manual control

To manually control the robot, simply use the drop down box and the +/- buttons (Figure 9(c)).
The drop down box contains all joint angles, including 7 joints on each arm, the head joint, and
both grippers. Select a joint and then click the + or - button to rotate the joint in one direction or
the other.

Keyboard shortcuts: use T , Y , U , I , O , P , [(of the same row on a common
keyboard) to rotate the W2, W1, W0, E1, E0, S1, and S0 joints of the right arm; similarly, use G ,
H , J , K , L , ; , ’ to rotate the respective joints of the left arm; use] to rotate the

head joint H0. Hold Shift when pressing the above keys to rotate the corresponding joints in the
other direction. Use = / - to open/close the right gripper, and 0 / 9 to open/close the left
gripper.

5.2 Matlab scripting

smile provides an interface to allow the user’s Matlab scripts to control the simulated robot. The
“user” in this context refers to the software developers of the robot’s cognitive controller. Through
this interface, the robot’s behaviors, including its imitation learning mechanism and the way it
reacts to environmental stimuli, can all be implemented in Matlab, which is known to be fast in
prototyping. This subsection describes how the user’s Matlab scripts can interact with smile by
receiving sensory inputs and generating motor outputs in real time.

The user needs to provide two scripts: an initialization script and a callback script, both placed
in the subdirectory matlab/. The initialization script is called once by smile before any calls to
the callback script. The callback script is called repeatedly afterwards whenever smile is updating
the main screen. If smile is running at 60 FPS, the callback script is also called 60 times per
second. At each call to the callback script, smile supplies the callback script with the robot’s
sensory information (e.g., visual images and current joint angles). smile then retrieves motor
commands (e.g., joint velocities) that the callback script may issue and executes them on the robot.
Note that the calls to the user’s scripts are blocking, meaning that smile will always wait for the
user’s scripts to complete before it processes the next update of the main screen. Therefore, it is
important to keep the user’s scripts fast, or the frame rate may drop significantly. When the frame
rate drops below ∼12 FPS, obvious visual latencies and strange physics effects may occur.

To specify the filenames of the user’s scripts, edit matlab/agentBehavior.m, whose content is
shown below, and replace init and callback with the filenames of the user’s initialization
and callback script.

function [init, callback] = agentBehavior()
init = @__init__; % fill in the name of the initialization script

14

callback = @__callback__; % fill in the name of the callback script
end

In the Robot window (Figure 9), clicking the Matlab Control button will start invoking the
user’s initialization and callback scripts. smile does so by automatically launching the Matlab
environment (if Matlab is installed) before calling the user’s scripts. Therefore, it is not necessary to
manually launch the Matlab environment before running smile. Clicking the Matlab Control button
again will stop invoking the user’s scripts. Whether the user’s scripts are currently being called by
smile is indicated in the Status window. (Keyboard shortcut: M to toggle the invocations of the
user’s Matlab scripts.)

smile communicates with the user’s callback scripts through three global Matlab struct

variables: sensor, motor, and aux. sensor is set by smile to pass sensory information to the
user’s scripts, motor can be set by the user’s scripts to pass motor commands to smile, and aux

is used to exchange auxiliary information between smile and the user’s scripts.
A sample of the sensor variable is printed below:

sensor =
timeElapsed: 0.0283
jointAngles: [2x7 double]

endEffPos: [2x3 double]
gripperOpening: [2 2]

rgbVision: [150x200x3 double]

The sensor variable includes the following fields:

â timeElapsed is the time elapsed (in seconds) since the last time the callback script is invoked.

â jointAngles is a 2-by-7 matrix containing the current joint angles of all arm joints. The first
row corresponds to the left arm and the second to the right arm. The columns are indexed in
the order of: S0, S1, E0, E1, W0, W1, W2.

â endEffPos is a 2-by-3 matrix containing the (X, Y, Z) coordinates of two end effector positions.
An end effector is located at the center of a gripper. The first row corresponds to the left
gripper and the second to the right. Columns are indexed in the order of: X, Y, Z.

â gripperOpening contains the current widths of the grippers. The width is measured as the
inner distance between the two digits of each gripper. The first element corresponds to the
left gripper and the second to the right gripper.

â rgbVision contains the visual image captured by the head-mounted virtual camera of the
robot. The image size is 150 (height) by 200 (width) pixels. The first two indices of the field
refer to pixel locations. The third index refers to the red, green, and blue intensities of each
pixel. Note that rgbVision may not be available in every invocation of the callback script
due to performance considerations. Therefore, it is important to test the existence of this field
before accessing it, such as:

if any(strcmp(’rgbVision’, fieldnames(sensor)))
image(sensor.rgbVision); % draw the image whenever it is available

end

A sample of the motor variable is printed below:

motor =
jointVelocities: [2x7 double]

gripperVelocities: [2x1 double]

15

The motor variable includes the following fields, which are set by the user’s scripts:

â jointVelocities is a 2-by-7 matrix setting the intended rotational velocities for the arm
joints (radian per second). The first row corresponds to the left arm and the second to the
right. The columns are indexed in the order of: S0, S1, E0, E1, W0, W1, W2.

â gripperVelocities sets the intended opening/closing velocities for the grippers. Positive
values open the grippers and negative values close them. The first element corresponds to the
left gripper and the second to the right.

â jointAngles (not shown in the above sample) is an optional 2-by-7 matrix that sets each
joint instantly to a specific angle. If this field exists, the jointVelocities field will have no
effects. The indexing of the matrix is identical to jointVelocities.

A sample of the aux variable is printed below:

aux =
path: ’matlab/’

numLimbs: 2
numJoints: 7

minJointAngles: [2x7 double]
maxJointAngles: [2x7 double]
initJointAngles: [2x7 double]

drawMarkers: [4x3 double]

Each field of aux is explained below:

â path contains a string specifying the path that contains the users’ Matlab scripts. Currently
this field is a constant string “matlab/”.

The default working directory of the user’s scripts is at the root directory of smile (where
SMILE.jar is at). It is suggested that the user’s scripts access files contained in the matlab/

subdirectory only. To do so, simply prepend this field to any filenames appearing in the user’s
scripts. The user’s scripts should not modify the value of this field.

â numLimbs contains the number of limbs the robot has. A bimanual robot has two arms, and
hence the value 2. The user’s scripts should not modify the value of this field.

â numJoints contains the number of joints per limb. The simulated robot current has 7 joints
per arm. The user’s scripts should not modify the value of this field.

â minJointAngles is a 2-by-7 matrix containing the lower bounds of the joint angles. The first
row corresponds to the left arm and the second to the right arm. The columns are indexed in
the order of: S0, S1, E0, E1, W0, W1, W2. The user’s scripts should not modify the values of
this field.

â maxJointAngles is a 2-by-7 matrix containing the upper bounds of the joint angles. The
matrix indexing is identical to minJointAngles. The user’s scripts should not modify the
values of this field.

â initJointAngles is an optional 2-by-7 matrix to be set by the initialization scripts. It specifies
the initial joint angles of the robot. The matrix indexing is identical minJointAngles.

16

Figure 11: Visual markers are shown as transparent blue spheres. They do not interact with objects.

â drawMarkers is an optional N -by-3 matrix to be set by the user’s initialization scripts, to
visualize N spatial locations in the simulated world. Each row specifies an (X, Y, Z) coordinates
where smile will draw a “marker” in the simulated world. Markers allow one to visually
observe the exact locations of specified 3D coordinates. For example, in an arm control task,
a marker can be placed at the target location of an arm reaching movement, so that one can
visually observe how far apart the robot grippers are from the target. A marker is visualized
as a transparent blue sphere (Figure 11). The markers serve visualization purposes only and
do not interact with objects.

â exit (not shown in the above sample) is an optional field that, once set by the user’s scripts,
disables the Matlab interface. smile stops invoking the user’s scripts from this point on. All
joint and gripper velocities are set to 0. All markers drawn are cleared.

Files matlab/exampleInit.m and matlab/exampleCallback.m provide a simple example for
writing initialization and callback scripts. They rotate all arm joints simultaneously at a constant
speed. This example shows the content of sensor, motor, and aux, and how they are used to
communicate with smile. To run the example, first modify matlab/agentBehavior.m to specify
the name of the example, as follows:

function [init, callback] = agentBehavior()
init = @exampleInit;
callback = @exampleCallback;
end

and then click the Matlab Control button in the Robot window to start.

6 Object interface

This section describes how objects on the tabletop can be generated. In Figure 12, the Objects
window contains two methods of generating objects: manually generating preset objects (the bottom
row in the window) and loading an XML file (the top row in the window).

In the first method, several preset objects are available for generation in the bottom drop down
box in the Objects window. Select one of the options and click the Execute button to generate
the specified objects. Objects are generated in random colors and at random locations on the

17

Figure 12: The Objects window for generating tabletop objects.

tabletop. A “Clear the table” option is also provided to remove all objects from the simulated world.
(Keyboard shortcuts: N to generate a stack of 5 blocks; B to generate a larger block; C to
clear all objects in the environment except those that are currently being grasped¶.)

In the second method, objects can be generated by loading custom XML files. The remainder
of this section describes the XML format supported by smile. An XML file specifies a set of
objects, along with their properties such as sizes, colors, locations, etc. Basic objects such as blocks
and cylinders can be specified using simple XML elements such as <block/> and <cylinder/>.
Custom 3D models can be specified using separate STL files, which can be generated by most CAD
tools. An XML file can also define composite objects that are composed of multiple basic objects
in a hierarchical fashion. Controls such as toggle switches and indicator lights, as well as their
relationship, can also be specified using XML. The object interface also supports advanced features
such as object templates and variable substitution, for improved flexibility and reusability in writing
XML files.

smile always loads tablesetup/default.xml when it is launched. The user can load other
XML files in the top row of the Objects window. All XML files stored in the directory tablesetup/

are listed in the drop down box. Selecting a filename in the drop down box and clicking the Load
XML button will load the XML file.

A valid XML file has to have a <tabletop/> root element as follows:

<?xml version="1.0" encoding="UTF-8"?>
<tabletop xmlns="http://synapse.cs.umd.edu/tabletop-xml" xspan="20" yspan="12">

...
</tabletop>

where xspan and yspan specify the size of the table, and the ellipses indicate where a list of other
XML elements should be written. XML elements directly under <tabletop/> either creates an
object, imports another XML file, or defines a template of objects. The following subsections
describe these XML elements.

6.1 Simple objects

Simple objects supported by smile include <block/>, <cylinder/>, <sphere/>, <box/>, and
<custom/> (Figures 13, 14). All these elements have the following common attributes:

¶Hold down Shift at the same time to clear the table with some robot rage.

18

Figure 13: Simple objects that are located near the center of the tabletop in their default orientation:
(a) a red block, (b) a green cylinder, (c) a blue sphere, and (d) an orange box.

Figure 14: A custom geometry defined in a separate STL file and loaded into smile using a
<custom/> element.

19

â id specifies the unique identifier of the object. This is for uniquely identifying the object.
If the id value is not unique, smile will append a ’#’ character followed by an integer to
enforce the uniqueness. Default value: an arbitrary unique string.

â location specifies where the center of the object is to be placed in the simulated world, in
the format of (x,y,z). This center serves as the center of mass of the object. Numbers x, y,
and z specifies the coordinates of a 3D location (see Figure 5 for how each axis is defined).
Positioning an object should prevent the object from overlapping with other objects or with
the table, or unexpected physics effects may occur. For example, since the center of a 1× 1× 1
<block/> object lies at the centroid, placing it at (0,0,0) causes the bottom half of the
block to intersect the table, which may result in the block sinking into the table. Instead,
place it at e.g., (0,0,0.5). This attribute is required.

â rotation specifies the orientation of the object. The format (x,y,z) is the same as the
location attribute, where x, y, and z are the angles (in degrees) that this object is to be
rotated around the X, Y, and Z axis, respectively. The order of applying these angles are: X,
Y, and then Z. For the same reason explained in location, orienting an object should also
prevent the object from overlapping with other objects and with the table. Default value:
(0,0,0).

â mass specifies the weight of the object in kilograms. Default value: 1.

â color specifies the color of the object. Predefined colors can be assigned using the following
values: black, blue, brown, cyan, darkgray, gray, green, lightgray, magenta, orange,
pink, red, white, and yellow. User-defined colors can be specified using the format #rrggbb,
where each letter is a hexadecimal digit, and r, g, b corresponds to the red, green, and blue
components of the color. For example, #00A57F defines a bluish green color. Default value:
gray.

Currently, smile supports the following simple objects. While each example below creates only
one object, an XML file can contain any number of objects.

â <block/> creates a solid cuboid, whose dimensions are specified by attributes xspan, yspan,
and zspan. Their values specified the length of the block along the X, Y, and Z axes. Default
values: xspan="1" yspan="1" zspan="1".

Example: a red block at the center of the table (Figure 13(a)).

<?xml version="1.0" encoding="UTF-8"?>
<tabletop xmlns="http://synapse.cs.umd.edu/tabletop-xml" xspan="20" yspan="12">
<block id="b1" location="(0,0,1.5)" rotation="(0,0,0)" color="red" mass="0.5"
xspan="5" yspan="4" zspan="3" />

</tabletop>

Note that the Z coordinate of the location is set to 1.5 so that the bottom half of the block
does not overlap with the table. All attributes except location are optional. Their default
values will be used if they are omitted.

â <cylinder/> creates a solid circular cylinder. The default orientation is that the axis of
the cylinder is parallel to the Y axis. The center of the cylinder lies in the center of its axis.
Use attribute yspan to specify the length of the cylinder and radius to specify the radius.
Default values: yspan="1" radius="0.5".

Example: a green cylinder (Figure 13(b)).

20

<?xml version="1.0" encoding="UTF-8"?>
<tabletop xmlns="http://synapse.cs.umd.edu/tabletop-xml" xspan="20" yspan="12">
<cylinder id="c1" location="(0,0,2)" color="green" yspan="7" radius="2"/>

</tabletop>

â <sphere/> creates a solid ball. The radius can be specified by attribute radius. Default
value: radius="1".

Example: a blue sphere (Figure 13(c)).

<?xml version="1.0" encoding="UTF-8"?>
<tabletop xmlns="http://synapse.cs.umd.edu/tabletop-xml" xspan="20" yspan="12">
<sphere id="s1" location="(0,0,2)" color="blue" mass="0.5" radius="2"/>

</tabletop>

â <box/> creates a cuboid container with open top and hollow center. Attributes xspan, yspan,
and zspan are used to specify the exterior lengths of the box along the three axes. Additionally,
attribute thickness specifies the the thickness of the walls. The center of the box lies in
the center of the whole cuboid (i.e., not at the center of the hollow space). Default values:
xspan="1" yspan="1" zspan="1" thickness="0.05".

Example: an orange box container (Figure 13(d)).

<?xml version="1.0" encoding="UTF-8"?>
<tabletop xmlns="http://synapse.cs.umd.edu/tabletop-xml" xspan="20" yspan="12">
<box id="x1" location="(0,0,1.5)" color="orange" xspan="5" yspan="4" zspan="3"
thickness="0.2" />

</tabletop>

â <custom/> creates a custom object by referring to an external STL file. An STL geometry
can be crafted using most CAD tools. The center of a custom object is implicitly defined
in the STL file. In the case where the STL file contains more than one geometry, only the
first geometry will be loaded. Attribute file (required) specifies the path of the STL file
to be loaded, and attribute scale specifies the scaling factor to be applied to the loaded
STL geometry (default value: scale="1"). The latter is for compensating the differences
of distance units used in CAD tools and in smile.

Example: a green teapot (Figure 14).

<?xml version="1.0" encoding="UTF-8"?>
<tabletop xmlns="http://synapse.cs.umd.edu/tabletop-xml" xspan="20" yspan="12">
<custom id="teapot" location="(0,0,0)" rotation="(-90,0,0)" color="green"
scale="0.1" file="tablesetup/stl/Teapot.stl"/>

</tabletop>

Note that the STL file path is relative to the root directory of smile.

All simple object elements can have zero or more <description/> elements as child elements.
Each <description/> element has attributes name and value (both required). This element
does not affect how objects are created/initialized by smile. Instead, it is intended to allow users
to annotate/describe object properties, and its name and value will appear in the create event
of a recorded demonstration (see Section 4.1). Note that smile always implicitly inserts to all
object a description named shape, whose value is taken from the name of the simple object, such
as block and sphere. In the case of a <custom/> element, the value of shape is taken from the
filename loaded. For example, writing:

21

<?xml version="1.0" encoding="UTF-8"?>
<tabletop xmlns="http://synapse.cs.umd.edu/tabletop-xml" xspan="20" yspan="12">

<custom location="(0,0,0)" file="tablesetup/stl/Teapot.stl">
<description name="style" value="modern"/>

</custom>
</tabletop>

is equivalent to writing:

<?xml version="1.0" encoding="UTF-8"?>
<tabletop xmlns="http://synapse.cs.umd.edu/tabletop-xml" xspan="20" yspan="12">

<custom location="(0,0,0)" file="tablesetup/stl/Teapot.stl">
<description name="shape" value="Teapot"/>
<description name="style" value="modern"/>

</custom>
</tabletop>

Users can override the smile-generated value of shape by explicitly defining a <description/>

element of the same name.

6.2 Composite objects

Multiple simple objects can be hierarchically combined to form a single rigid composite object,
using <composite/> elements. A <composite/> element can have one or more child elements that
are either simple object elements or <composite/> elements. This forms a logical tree structure.
Attributes id, location (required), and rotation can appear in a <composite/> element.
Additionally, the top-level <composite/> element can have a mass attribute. Each descendent
element of a <composite/> element can have an optional boolean attribute pointable (default
value: false), which indicates whether a certain part of a composite object can be pointed to by
the demonstrator.

In a <composite/> tree structure, while the location and rotation of the root element
specifies the location and orientation of the entire object, those of other descendent elements are
not absolute but are relative to their parent element. For example, the following XML does not
place the block at location (0,0,1) but at (2,2,1) instead.

<?xml version="1.0" encoding="UTF-8"?>
<tabletop xmlns="http://synapse.cs.umd.edu/tabletop-xml" xspan="20" yspan="12">

<composite location="(2,2,0)" rotation="(0,0,0)" mass="10">
<block xspan="2" yspan="2" zspan="2" location="(0,0,1)"/>

</composite>
</tabletop>

This is because the block location is moved upwards relative to the center of the enclosing composite
object, so that the center of the composite object is located at the bottom of the block. The center
of the composite object is then moved to (2,2,0), which results in the block center being moved
to (2,2,1). Note that the center of a composite object is also the object’s center of mass. In
this example, it is equivalent to having a block whose center of mass is at the center of its bottom
surface. While the position and the location of the root <composite> object should not overlap
with other objects or with the table, it is fine for its constituent shapes to overlap with one another.
This is because all shapes under the root element are considered as parts of a whole object, and
therefore they do not collide with one another.

The following example illustrates how multiple simple objects can be used to compose a hammer-
like object (Figure 15). Notice how the handle is offset further from the center of the object than the

22

Figure 15: A composite object example. The hammer-like shape is composed of an orange handle
and a dark gray head. The head is in turn composed of a cube and two cylinders.

head piece, such that the center of mass is near the center of the head piece. This object is treated
as a single object, so that if one moves the handle, the other parts of the object move automatically
with it.

<?xml version="1.0" encoding="UTF-8"?>
<tabletop xmlns="http://synapse.cs.umd.edu/tabletop-xml" xspan="20" yspan="12">

<composite location="(0,0,1)" rotation="(0,0,-30)" mass="10" id="hammer">
<composite id="head" location="(-0.2,0,0)">

<block color="darkgray" id="head0" location="(0,0,0)"/>
<cylinder color="darkgray" id="head1" radius="0.75" yspan="0.8"

location="(0,0.9,0)"/>
<cylinder color="darkgray" id="head2" radius="0.75" yspan="0.8"

location="(0,-0.9,0)"/>
</composite>
<cylinder id="handle" color="orange" radius="0.35" yspan="5"

rotation="(0,0,90)" location="(2.8,0,0)"/>
</composite>

</tabletop>

Similarly to simple object elements, each <composite/> element can contain zero or more
<description/> element for annotating user-defined object properties, which will appear in the
create event of a demonstration.

6.3 Physics constraints

It is possible to specify physics constraints between two objects, such that the two objects appear to
be connected in a certain way. Currently, only slider joints are supported by smile. A slider joint
creates a physics constraint analogous to the relation between a desk and a drawer. The drawer can
slide away from the desk in one direction (1-DOF), and there exist a minimum and a maximum
offset values between the two objects.

23

To create a slider joint between two object, use a <sliderJoint/> element. A <sliderJoint/>

element should contain exactly two child elements that are each a whole object. The first child
element will be referred to as obj1 and the second obj2 hereafter for convenience. A slider joint
has two reference points. The first reference point is located at the origin (0,0,0), where obj1

is attached. The location and rotation of obj1 are relative to this first reference point. The
second reference point is located at (-init,0,0), where init is an attribute specifying the initial
offset between the two objects. The value of init must be in [min,max], where min and max are
attributes specifying the minimum and maximum offset distances between the two object. Object
obj2 is attached to this second reference point. The location and rotation of obj2 are relative
to this reference point. So far, a sliding “rail” between obj1 and obj2 is created along the X axis.
A <sliderJoint/> has its own location and rotation attributes too, which then transform the
“rail” to desired location and orientation. Default values: min=0, max=1, init=0.

Physics properties of a slider joint can be specified using attributes damping, restitution,
and softness. They each takes on value between 0 and 1 (inclusive). Damping specifies the drag
of sliding movements (Default: damping="0"). Restitution specifies the bounciness when the
limits of the allowed moving range are reached (Default: restitution="0.7"). Softness specifies
the proportion of the allowed moving range that the objects can move freely. At the two ends
of moving range that are outside of this proportion, the drag gradually increases to 1 (Default:
softness="1"). Additionally, boolean attribute collision specifies whether obj1 and obj2 can
collide with each other (Default: collision="false").

The example below illustrates how a box with a sliding lid can be made (Figure 16):

<?xml version="1.0" encoding="UTF-8"?>
<tabletop xmlns="http://synapse.cs.umd.edu/tabletop-xml" xspan="20" yspan="12">

<sliderJoint location="(0,-1,3)" min="0" max="5.8" init="4">
<box id="box" xspan="6" yspan="4" zspan="3" thickness="0.2" location="(0,0,-1.5)"
color="#00ffff" mass="10"/>

<block id="lid" xspan="6" yspan="4" zspan="0.2" location="(0,0,0.1)" color="red"
mass="1"/>

</sliderJoint>
</tabletop>

Note that obj1 (the box) attaches its top to the first reference point of the slider joint, and obj2

(the lid) attaches its bottom to the second reference point of the slider joint. Therefore, to avoid
intersecting the table, the Z coordinate of the slider joint must be at least the height of the box,
which is 3.

In addition to slider joints, smile also supports the creation of a special object: a chain
(Figure 17(a)). A chain is not a single rigid object, but a set of linearly connected links that mimics
a string. The connections between links are special physics constraints that are different from slider
joints described above. Currently, this kind of physics constraint is not available directly through
XML yet. The two ends of a chain are fixed at user-specified locations. A chain can be disconnected
(i.e., broken into two pieces) by removing one of its links, using the the Destroy button in the
Demonstration Tools window Figure 17(b). The attributes of a chain are:

â id specifies the identifier of the chain. This identifier will be used as a prefix to generate
identifiers for the links that compose this chain. Default value: an auto-generated unique
string.

â color specifies the color of the chain. All links in a chain share the same color. Default
value: gray.

24

Figure 16: A slider joint connecting a box and a block (lid). (a) The lid is at its initial position. (b)
The lid is slid to the minimum offset. (c) The lid is slid to the maximum offset.

â start and end specify the fixed 3D locations of the two ends of the chain, in the format of
(x,y,z). These attributes are required.

â linkXspan, linkYspan, and linkZspan specify the dimensions of a link. A link is simply
a narrow <block/> object with its longest side lying on the Y axis. Default values:
linkXspan="0.1" linkYspan="1" linkZspan="0.1"

â linkCount specifies the number of links composing the chain. The value must be large enough
such that linkCount × linkYspan is enough to cover the distance between start and end.
Otherwise, the chain may not be generated. Default value: 0.

â linkPadding specifies the added length at both ends of each link (in the same direction
as linkYspan). The paddings aim to visually cover gaps between links, so as to make the
appearance of the chain resemble a string. The paddings are for visual purposes only. They
do not interact with other objects. Default value: 0.05.

â linkMass specifies the weight of each link. Default value: 1.

Example: (Figure 17(a))

<chain color="magenta" start="(6,-2,4)" end="(-6,-2,4)" linkCount="12"/>

6.4 Controls

smile supports two types of controls, toggle switches and indicator lights. Each control can define
a number of discrete states. Each state is represented by an integer starting from 0. A control can
also define a set of downstream controls, so that whenever the current state of the control changes
to a new value N , it triggers its downstream controls to also transition to state N . If state N is not
a valid state for a downstream control, the state transition is ignored.

25

Figure 17: (a) A chain object with its both ends fixed above the tabletop. (b) After one of its links
is removed, the remainder of the chain falls down to the tabletop.

A toggle switch can be created using a <toggleSwitch/> element. Whenever the demonstrator
presses it using a right-click, its current state is increased by one. Once the current state value
exceeds a predefined maximum value, it is reset to 0. The geometry of a toggle switch is illustrated
in Figure 18. It is composed of two blocks that partially intersect each other with an angle. The
attributes of <toggleSwitch/> are as follows:

â id specifies a unique ID of the control. It is important to ensure that the ID is unique if this
control is to be triggered by other controls. This attribute is required.

â location and rotation control the position and orientation of the switch. Default value:
rotation="(0,0,0)"; location is required.

â xspan, yspan, zspan, angle (in degrees) and color specify the appearances of the tog-
gle switch, as illustrated in Figure 18. Default values: xspan="0.6", yspan="0.3",

zspan="0.1", angle="6", color="darkgray".

â numStates specifies the number of valid states that the switch can be in. A valid state is any
integer in range [0, numStates). Default value: 2.

â initState specifies the initial state of the toggle switch. Default value: 0.

â leftPressed specifies if the left side of the switch is initially pressed down, as viewed from
the angle illustrated in Figure 18. Which side of the switch is pressed down is not directly
related to the current state of the switch, except that pressing the switch will cause the state
to increment by one (modulo numStates). Default value: true.

Note that while a toggle switch can be in any state in [0, numStates), it’s visual appearances can
only be in one of the two states: left-side down and right-side down. A visual state is not directly
related to the state of a toggle switch, only that whenever the visual state changes (i.e., when
triggered by the demonstrator), the state is increased by one modulo numStates. In a recorded

26

Figure 18: Geometry of a toggle switch.

demonstration, only the visual state is recorded in initializeControl and changeControlState

events, where 0 represents left-side down and 1 represents right-side down (see Section 4.1). Further,
a <toggleSwitch/> can have zero or more <downstream/> elements as children, which has a single
attribute id referencing another control. Each <downstream/> element specifies a downstream
control that can be controlled by this switch. Whenever the state of a switch changes to a new
value, the states of all downstream controls are changed to this same value (where applicable).

A set of indicator lights can be created using an <indicatorLights/> element. The demon-
strator cannot directly affect the states of indicator lights through right-clicking as with a toggle
switch. Therefore, the state transition of a set of indicator lights can only be triggered by upstream
controls. The geometry of a set of indicator lights is illustrated in Figure 19. The indicator lights are
organized along the X axis with equal intervals, and each light is assigned an integer light ID starting
from 0, from left to right. In each state, each light can either be turned off (made invisible) or
displays a certain color, as defined by child elements <state/>. An <indicatorLights/> element
has the following attributes:

â id specifies a unique ID of the control. It is important to ensure that the ID is unique if this
control is to be triggered by other controls. This attribute is required.

â location and rotation control the position and orientation of the switch. Default value:
rotation="(0,0,0)"; location is required.

â numLights specifies the number of lights that this control has. Each light is assigned an
integer ID in [0, numLights) in an increasing order from left to right. Default value: 2.

â xspan, lightRadius, and lightZspan specify the appearances of the set of indicator
lights, as illustrated in Figure 18. Default values: xspan="0.15", lightRadius="0.03",

lightZspan="0.005".

â initState specifies the initial state of this control. The value should be a non-negative
integer that is strictly less than the number of valid states of this control. The number of
valid states is implicitly defined using child XML elements. Default value: 0.

An <indicatorLights/> element can contain (as child elements) zero or more <downstream/>

elements as in <toggleSwitch/>, followed by one or more <state/> elements. The number of
contained <state/> elements determines the number of states that this control can be in. Each
<state/> can have an optional attribute descriptionName, whose value is a string indicating
the descriptive name of the state. This name will appear in demonstration text files under

27

Figure 19: Geometry of a set of indicator lights.

initializeControl and changeControlState events (see Section 4.1). The first <state/>

element represents state 0, the second represents state 1, and so on. Each <state/> element
can contain zero or more <light/> elements. A <light/> has attributes id (required), which
specifies the integer ID of a certain light, and color (default value: red), which specifies the
color of the light. Each light can be in different color in different states. Lights that do not appear
in a <state/> element is turned off (invisible) in that state.

The example below creates a toggle switch controlling two sets of indicator lights (Figure 20):

<?xml version="1.0" encoding="UTF-8"?>
<tabletop xmlns="http://synapse.cs.umd.edu/tabletop-xml" xspan="20" yspan="12">

<composite location="(-2,0,1)">
<block xspan="2" yspan="2" zspan="2" location="(0,0,0)"/>
<toggleSwitch id="S1" xspan="1.7" yspan="1" zspan="0.5" location="(0,0,0.55)"

angle="20" leftPressed="false" numStates="3">
<downstream id="L1"/>

</toggleSwitch>
</composite>
<composite location="(2,0,0.5)" rotation="(0,0,90)">
<block xspan="5" yspan="2" location="(0,0,0)"/>
<indicatorLights id="L1" xspan="4.5" location="(0,0,0.5)" numLights="3"
lightRadius="0.7">
<downstream id="L2"/>
<state descriptionName="stop">

<light id="0" color="red"/>
</state>
<state descriptionName="caution">

<light id="1" color="yellow"/>
</state>
<state descriptionName="go">

<light id="2" color="green"/>
</state>

</indicatorLights>
</composite>
<composite location="(5,0,0.5)" rotation="(90,0,0)">
<block xspan="1" yspan="1" location="(0,0,0)"/>
<indicatorLights id="L2" xspan="0.4" location="(0,0,0.5)" numLights="1"
lightRadius="0.4">
<state descriptionName="red">

<light id="0" color="red"/>
</state>
<state descriptionName="dark">

<light id="0" color="black"/>
</state>

</indicatorLights>
</composite>

</tabletop>

28

Figure 20: An example containing three controls (from left to right): a switch (S1), a set of indicator
lights (L1), and another indicator light control (L2). The numbers of states for S1, L1, and L2 are 3,
3, 2, respectively. S1 has a single downstream control L1, and L1 has a single downstream control
L2. (a) Initially, all controls are in state 0. (b) After the demonstrator pressed S1, all controls
are in state 1. (c) After the demonstrator pressed S1 again, both S1 and L1 are in state 2, while
L2 remains in state 1. If the demonstrator press S1 again, all controls will go to state 0 as in (a),
although the left side instead of the right side of S1 will be down.

In this example, a toggle switch (ID=S1) is created within the first composite object. S1 can be
in one of three possible states (numStates="3") and has a downstream L1. The initial state of
S1 is 0 by default. The second composite contains a indicator light control (ID=L1). L1 contains
three lights (numLights="3") and can be in one of three states, which are defined by its three child
<state/> elements. In state 0, only the first light is turned on, and the color is red. Similarly, in
state 1, only the second yellow light is turned on, while in state 2, only the third green light is turned
on. L1 also has a downstream L2. In the third composite object, another indicator light control is
defined (ID=L2). This control has one light and two possible states. When the demonstrator presses
S1, the state of S1 becomes 1. This causes its downstream L1 to go to state 1 as well, which results
in a single yellow light being turned on. L1 also passes its state to its downstream L2, resulting in
the light in L2 becomes black. Similarly, if the demonstrator presses S1 again, both S1 and L1 will
go to state 2, and the light appearances of L1 will change accordingly. However, since L2 has only
two states, it cannot transition to state 2. Therefore, it will remain in state 1.

In addition to the two types of controls described above, users can also define custom controls
using <customControl/> elements. Users can specify the control appearances in each state, as
well as state transitions of the custom controls. This grants significant freedom in creating controls.
A <customControl/> element has the following attributes:

â id specifies a unique ID of the control. It is important to ensure that the ID is unique if this
control is to be triggered by other controls. This attribute is required.

â location and rotation control the position and orientation of the control. Default value:
rotation="(0,0,0)"; location is required.

â initState specifies the initial state of this control. The value should be a non-negative
integer that is strictly less than the number of valid states of this control. The number of valid
states is the number of <state/> child elements that this <customControl/> has. Default
value: 0.

â name specifies the name of the control. This value is used in initializeControl events in
recorded demonstrations (see Section 4.1). Default value: customControl.

A <customControl/> element can contain (as child elements) zero or more <downstream/>

elements, followed by one or more <state/> elements. The <downstream/> elements list a set

29

of downstream controls such that, when the state of this custom control changes to a new value
N , those downstream controls will also transition to this same state N . The number of <state/>
elements following <downstream/> determines the number of states that this control can be in.
Each <state/> can have an optional attribute descriptionName, whose value is a string indicating
the descriptive name of the state. This name will appear in recorded demonstration text files under
initializeControl and changeControlState events (see Section 4.1). The first <state/>

element represents state 0, the second represents state 1, and so on. Each <state/> element can
contain zero or more simple and composite objects. These objects specify the appearances of the
control when the control is in the corresponding state. Each of these simple or composite object
elements can have an optional attribute nextStateWhenTriggered specifying a numerical state
value. This value indicates that, when the corresponding part of the control is triggered by the
demonstrator (via right-clicking), the control will go to the indicated state. Figure 21 shows an
example of creating three different custom controls. The XML for creating the sphere control on
the left-side of the figure is shown below as an example (see tablesetup/custom-control.xml

for complete XML):

<customControl id="s1" location="(-3,0,0)">
<downstream id="c1"/>
<state>
<sphere radius="0.5" location="(0,0,0.5)" color="red"

nextStateWhenTriggered="1"/>
</state>
<state>
<sphere radius="0.8" location="(0,0,0.8)" color="orange"

nextStateWhenTriggered="2"/>
</state>
<state>
<sphere radius="1.1" location="(0,0,1.1)" color="green"

nextStateWhenTriggered="3"/>
</state>
<state>
<sphere radius="1.4" location="(0,0,1.4)" color="magenta"

nextStateWhenTriggered="0"/>
</state>

</customControl>

While in this example, each <state/> contains only a <sphere/>, it can certainly contain multiple
object elements, and each object element can have different nextStateWhenTriggered values.

6.5 Importing other XML files

An XML file can import other XML files using <include/> elements that are direct children of the
root <tabletop/> element. An <include/> element has a single attribute file, which specifies
the path of the target XML to be imported. The path is relative to the root directory of smile.
Upon seeing this element, smile substitutes it with the content of the target XML file. If the
target XML file contains other <include/> elements, they are processed recursively. Each XML
file is loaded only once, meaning that smile ignores those <include/> elements whose target file
has already been loaded. The following is an example of importing an XML file:

<?xml version="1.0" encoding="UTF-8"?>
<tabletop xmlns="http://synapse.cs.umd.edu/tabletop-xml" xspan="20" yspan="12">

<include file="tablesetup/twoblocks.xml"/>
<block id="BlueBlock" location="(0,-3,0.5)" color="blue" />

</tabletop>

30

Figure 21: A custom control example. Three custom controls are created on the tabletop. On the
left side is a sphere that changes its color and size in different states. A state transition can be
triggered by right-clicking on the sphere. In the middle is a dial whose lever can be in one of four
positions as indicated by blue ticks. A state transition can be triggered by right-clicking on the
blue ticks. On the right side is a seven-segment display. The dial is a downstream control of the
sphere, and the display is downstream control of the dial. (a)–(d) shows the controls in states 0–3,
respectively, where state transitions are triggered by right-clicking on the sphere.

where the content of tablesetup/twoblocks.xml is:

<?xml version="1.0" encoding="UTF-8"?>
<tabletop xmlns="http://synapse.cs.umd.edu/tabletop-xml" xspan="20" yspan="12">

<block id="RedBlock" location="(2,0,0.5)" color="red"/>
<block id="GreenBlock" location="(-2,0,0.5)" color="green"/>

</tabletop>

This is equivalent to the following:

<?xml version="1.0" encoding="UTF-8"?>
<tabletop xmlns="http://synapse.cs.umd.edu/tabletop-xml" xspan="20" yspan="12">

<block id="RedBlock" location="(2,0,0.5)" color="red"/>
<block id="GreenBlock" location="(-2,0,0.5)" color="green"/>
<block id="BlueBlock" location="(0,-3,0.5)" color="blue" />

</tabletop>

31

6.6 Object templates and instances

For better XML code modularity and reusability, smile allows XML files to define object templates
that can be used to generate object instances. When generating object instances, different user-
defined parameter values can be passed to the same template to create objects of different attributes.
Internally, smile performs variable substitutions and basic arithmetic.

To define an object template, elements <def/> can be used directly under the root element
<tabletop/>. Each <def/> has a single attribute name specifying the name of the template. The
content of the template is specified as child elements of <def/>. A copy of all these child elements
will replace each <instance/> element that refers to this template, after variable substitutions
where appropriate. XML elements for simple objects, composite objects, slider joints, controls,
etc., may be used as content of templates. The attribute values of these content elements may
contain variables, which are surrounded by dollar signs, e.g., xspan="$width$", where width is
the name of the variable. Variable values are determined by (passed in from) each <instance/>

element where an object instance is to be created. It is also possible to use multiple variables
combined with string literals in the same attribute value, such as location="(x,y,1)", where
x and y are variables. Basic arithmetic is also supported within each dollar-sign surrounded area,
assuming each variable value occurring in this area can be successfully converted to a float value in
smile, e.g., radius="$width/2-(margin*2+0.3)$", where width and margin are two variables
convertible to float values. Although the values of variables are determined by individual object
instances, a template can also assign default values to variables in case that some variable values
are left unassigned by the instances. To do so, zero or more <var/> elements can be added as
direct child elements of <def/>, preferably before template content. Each <var/> element has
attributes name and value, which are the name and default value of a variable. Additionally, a
boolean attribute derived can also be specified in a <var/> element (default value: false).
When assigned true, this attribute tells smile that this variable’s value should be derived from
other non-derived variable values. That is, variable substitutions will be performed on this <var/>
element’s value attribute right before template content is processed. Finally, the following example
defines a template “cube”:

<?xml version="1.0" encoding="UTF-8"?>
<tabletop xmlns="http://synapse.cs.umd.edu/tabletop-xml" xspan="20" yspan="12">

<def name="cube">
<var name="size" value="1"/>
<var name="x" value="0"/>
<var name="y" value="0"/>
<var name="annotation" value="a cube of size $size$" derived="true"/>
<block id="id" xspan="$size$" yspan="$size$" zspan="$size$"
location="(x,y,$size/2$)">
<description name="annotation" value="$annotation$"/>

</block>
</def>

</tabletop>

A cube defined here is a block of the same width, heigh, and depth, which are determined by variable
size. Although this example contains only one content element <block/>, it is certainly possible
to contain multiple more complicated XML structures. The location of a cube is determined by
two variables x and y, while the Z coordinate, a half of size, will place the cube right on top
of the table. The default values are: size=1, x=0, y=0. Note that variable id has no default
value, and thus this value must come from each instance of cube. If the value of id is not assigned
by an instance, smile will not perform variable substitution for this attribute (i.e., will leave it
as it is), which will cause an error because a dollar sign is not a valid character for object IDs.

32

Variable annotation is marked as a derived variable, which means that its value is derived from
other non-derived variable values, i.e., size in this case.

To create an instance using a template, element <instance/> can be used anywhere simple
object elements are allowed. smile searches and replaces all occurrences of <instance/> elements
with template content defined by <def/> elements. An <instance/> element has a single attribute
def that specifies the name of a template. To pass variable values to a template, zero or more <var/>
elements can be used as child elements of <instance/>. Each <var/> element has attributes name,
value, and derived as described earlier. Note that variable values given by an instance override
those given by a corresponding template. That is, when both the instance and the template assign
different values to a variable of the same name, only the value assigned by the instance will be
used. The following example instantiates a cube whose template is given in the previous example
(assuming the template filename is def-cube.xml):

<?xml version="1.0" encoding="UTF-8"?>
<tabletop xmlns="http://synapse.cs.umd.edu/tabletop-xml" xspan="20" yspan="12">

<include file="tablesetup/def-cube.xml"/>
<instance def="cube">
<var name="size" value="5"/>
<var name="id" value="c0"/>
<var name="y" value="-1"/>

</instance>
</tabletop>

The XML structure after all variable substitutions is automatically stored in debug.xml for
debugging purposes. The content of debug.xml in this case is:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<tabletop xmlns="http://synapse.cs.umd.edu/tabletop-xml" xspan="20" yspan="12">

<block id="c0" location="(0,-1,2.5)" xspan="5" yspan="5" zspan="5">
<description name="annotation" value="a cube of size 5"/>

</block>
</tabletop>

Since the value of variable x is not assigned by the instance, the default value in the template x=0

is used.
When creating an instance using a template that contains nested instances of other templates,

variable values in the enclosing instance are inherited by the enclosed instances. For variables of the
same names, the values that are “the most local” to an instance are used. For example:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<tabletop xmlns="http://synapse.cs.umd.edu/tabletop-xml" xspan="20" yspan="12">

<def name="block">
<block id="id" location="(x,y,z)"/>

</def>
<def name="pileOfTwo">
<instance def="block">
<var name="z" value="0.5"/>
<var name="id" value="idBottom"/>

</instance>
<instance def="block">
<var name="z" value="1.5"/>
<var name="id" value="idTop"/>

</instance>
</def>
<instance def="pileOfTwo">
<var name="x" value="3"/>

33

<var name="y" value="2"/>
<var name="z" value="10"/>
<var name="id" value="pile"/>

</instance>
</tabletop>

In this example, the variable values for the outer instance (of template pileOfTwo) are: x=3, y=2,

z=10, id=pile. In either inner instance, values of x=3 and y=2 are inherited from the outer
instance, and the value of z is locally assigned (0.5 or 1.5). The value of id in either inner instance
is derived from the that of the outer instance, so that the value becomes pileBottom or pileTop.
Note that attribute derived="true" is not needed for variable id because its value is derived from
that of the outer instance, not from other variable values in the same instance. The resulting XML
for the above example is:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<tabletop xmlns="http://synapse.cs.umd.edu/tabletop-xml" xspan="20" yspan="12">

<block id="pileBottom" location="(3,2,0.5)"/>
<block id="pileTop" location="(3,2,1.5)"/>

</tabletop>

7 Conclusion

This report has described the features and usages of smile, a software-simulated virtual environment
for supporting robot imitation learning. In the virtual environment, a user can demonstrate
procedural tasks, through intuitive GUI controls and mouse inputs, using various simulated objects
on a tabletop. User-performed procedures can be recorded as demonstrations for training a robot
agent. Since the demonstrator in smile is purposely made invisible to the robot, a demonstration
appears as if objects move on their own. smile has three main interfaces, through which a user
can affect the virtual environment. First, the demonstration interface consists of a set of overlaid
GUI controls and mouse inputs that can be used to manipulate simulated objects and record
demonstrations. Second, the robot interface allows a user to control the simulated robot in smile,
either manually or through programming Matlab scripts. Third, the object interface allows a user
to define and specify what objects are to be created in the environment, using XML structures.

In the future, we plan to continue adding more types of objects to smile, including tool objects
that can be used to affect the state of other objects, such as scissors and screw drivers. This can
significantly increase the types of actions that a demonstrator can do to objects, which is currently
limited in moving objects and triggering controls.

Bibliography

Huang, D.-W., Katz, G., Langsfeld, J., Gentili, R., and Reggia, J. (2015a). A virtual demonstrator
environment for robot imitation learning. In IEEE International Conference on Technologies for
Practical Robot Applications (TePRA).

Huang, D.-W., Katz, G., Langsfeld, J., Oh, H., Gentili, R., and Reggia, J. (2015b). An object-centric
paradigm for robot programming by demonstration. In Schmorrow, D. and Fidopiastis, C., editors,
Foundations of Augmented Cognition, pages 745–756. Springer.

Katz, G., Huang, D.-W., Gentili, R., and Reggia, J. (2016). Imitation learning as cause-effect
reasoning. In Conference on Artificial General Intelligence (AGI).

34

	Introduction
	Getting started
	Prerequisites
	Files
	Starting and stopping
	The main screen

	Camera navigation
	Demonstration interface
	Recording a demonstration
	Grasping and releasing
	Moving and rotation
	Other actions

	Robot interface
	Manual control
	Matlab scripting

	Object interface
	Simple objects
	Composite objects
	Physics constraints
	Controls
	Importing other XML files
	Object templates and instances

	Conclusion
	Bibliography

