Scaling Populations of a Genetic Algorithm for Job
Shop Scheduling Problems using MapReduce

Di-Wei Huang and Jimmy Lir
Department of Computer Sciericand the iSchodl
University of Maryland
College Park, MD 20742
Email:{dwh, jimmylin} @umd.edu

Abstract—Inspired by Darwinian evolution, a genetic algo-
rithm (GA) approach is one popular heuristic method for sohing Input data (key-value pairs)
hard problems such as the Job Shop Scheduling Problem (JSSP) ' ' SRR
which is one of the hardest problems lacking efficient exact / / »l/
solutions today. It is intuitive that the population size ofa GA may Mapper (Mapper) (Mapper) e ammn
greatly affect the quality of the solution, but it is unclear what
are the effects of having population sizes that are significaly
greater than typical experiments. The emergence of MapRedze,
a framework running on a cluster of computers that aims to
provide large-scale data processing, offers great opportities to

investigate this issue. In this paper, a GA is implemented tscale (Reducer) (Reducer) (Reducer) LR
the population using MapReduce. Experiments are conducted \ \ 4{
on a large cluster, and population sizes up td0” are inspected. I I

[] senes [

Output data (key-value pairs)

It is shown that larger population sizes not only tend to yied
better solutions, but also require fewer generations. Thezfore, it
is clear that when dealing with a hard problem such as JSSP, an
existing GA can be improved by massively scaling up populadins Fig. 1. The architecture of the MapReduce framework
with MapReduce, so that the solution can be parallelized and

completed in reasonable time.

|. INTRODUCTION components: thanappersand thereducers which execute

In solving hard problems where there lacks efficient exagiap and reduce tasks by invoking user-defimadp and
solutions, heuristic approaches, including genetic dlgms reduce functions, respectively. Each mapper and reducer
(GAs) [1], simulated annealing [2], and tabu search [3],ehagan be located on separate machines. In a MapReduce job,
become popular alternatives. Among them, GAs can be easigch mapper processes a portion of the input data in the
parallelized to scale its computing ability because ofritsim- form of key-value pairs, where each pair is sent as input
sic parallelism, and hence offer great potential towardisgl to the map function. Themap function produces zero or
hard problems. GAs represent potential solutions by strofg more intermediate key-value pairs. These intermediata dat
symbols, or linear chromosome, and simulate the processas¢ then shuffled, sorted, and sent to the reducers. How these
natural selection, crossover, and mutation among a papalatintermediate data are dispatched is controlled by anotber u
of chromosomes, as inspired by Darwinian evolution. Féees defined component called tpartitioner. The reducers process
of chromosomes are assessed based on the quality of @ intermediate data and output key-value pairs as the final
solutions they represent, and the fitter chromosomes aem givesults. The intermediate data sent to a reducer are aggcega
higher probability of survival and reproduction. In thismmar, and sorted by the keys, where theduce function is called
a good solution is likely to be evolved after a number gince for every key. As proposed in [5] and [6], GAs can be
generations. fitted into this framework by computing each generation as a

The emergence of the MapReduce framework [4] provid&éparate MapReduce job. Since MapReduce can handle input
new opportunities to empower GAs with the ability to handlgata of large sizes (e.g., terabytes and even petabytes), it
large populations (e.g., millions of individuals). Resgdony possible to encode the population of GAs as the input/output
to the need to process huge volumes of data over the growl@ja, and benefit from a large population.

Internet, MapReduce was designed to support paralleldargeTo assess the ability of GAs with large populations, the
scale data processing on a cluster of commodity hardwadeb Shop Scheduling Problem (JSSP) is chosen as the target
which is also known as cloud computing. It aims to providproblem to be solved. It has drawn much attention not only
seamless scalability such that as more machines are adfiedits practical applications in operation research, bigsba

to the cluster, computing capability grows almost lineaflg for its computational complexity. The objective is to schied
shown in Figure 1, the framework consists of two types df/| jobs on|M| machines such that the makespan, i.e., the

overall time needed to complete all jobs, is minimized. Eackhere the first operation of job comes first, followed by the
job consists of an ordered list of operations, each of whicgecond operation of job, followed by the first operation of
requires being processed by a certain machine for a certpb 1, and so on. Notice that any permutations of the genes will
uninterrupted duration. The ordering of operations regmes always yield valid schedules if the operations are addetdo t
precedences or dependencies among them. Typically, eachgohedule in the order of their appearance in the chromosome.
contains |M| operations requiring different machines. Two The data structure used to store an individual of the GA
constraints must be satisfied when scheduling an operatiorioshown in Figure 2. This key-value structure is used as the
durationd at timet: (1) all precedent operations are completethput, the intermediate, and the output data of MapReduce.
beforet; (2) no other operations are scheduled to the requir@tie key part contains an IDE [0,1) assigned to each
machine fromt to ¢ + d. The Traveling Salesman Problemindividual uniformly at random, and the value part contains
(TSP), a well known strong NP-complete problem, is a specalmakespan value, a generation value, and the chromosome.
case of JSSP [7]. Therefore, JSSP is much harder than TBfe makespan value stores the length of the schedule implied
and is among the hardest combinatorial optimization prable by the chromosome, that is, the length of time between the
Since there are no efficient exact solutions to date, a heurisexecution of the earliest operation and the completion ef th
approach is needed. latest one. The fitness can be evaluated directly through the
In this study, a GA with massive populations for solvingnakespan value, where a lower makespan value represents
JSSP is implemented using MapReduce. The GA is non-trivilfitter individual. The generation value facilitates tragiof
in that it includes encoding/decoding chromosomes, gidi evolution by storing the number of generations descendsd fr
schedules, performing local searches, handling tournaemethe original population. Finally, the chromosome is stoasd
base selections, and processing non-random crossovet. Aani array of integers.
has been suggested by theoretical research [8], [9] that GAs
with large population sizes are advantageous in solving har Key Value
problems, our GA for JSSP is given massive populations and
run on a large cluster. The experimental results show the
effects of having massive populations, and confirm thatelarg
populations indeed help in finding good solutions. Another
experiment is conducted to show that execution time deeseas
as the size of the cluster grows.
To our knowledge, this is the first implementation of genetic))
algorithms in MapReduce that takes advantage of state-Bf- The genetic algorithm
the-art techniques [10]-[14] to solve challenging readdlo = The main GA is implemented in the MapReduce frame-
problems. Although genetic algorithms have previouslynbeavork where each generation of the GA is performed by a
proposed for MapReduce [5] [6], the previous work tackled MapReduce job. The data structure shown in Figure 2 is
far simpler problem and lacked many features of modern G#sed as the input and output key-value pairs of both the map
techniques. Use of MapReduce allowed us to explore popu#ad reduce phases. The map phase evaluates the fitnesses of
tion sizes that are significantly larger than typical expemts, the population, where the schedules are built according to
and revealed interesting tradeoffs between populati@ssind the chromosome, and local search is performed to find the
number of generations. makespans. The fittest individual is recorded. The pantio
dispatches the resulting individuals to random reducers by
referring to their randomly generated IDs. The reduce phase
This section describes in detail the algorithms used in trﬁ?ocesses selection and crossover, and produces a new gen-
paper and how they are implemented in MapReduce. eration population as the output. After the new population
A. Representation has been generated, a new MapReduce job is created for this

. L ew generation. This process is continued until a satisfact
The operation-based representation is adopted [10], {11]3%'”“0”’ if not optimal, to the JSSP is found.

encode and decode the chromosomes. Consider a set of jo L . :
o X . Mapper: Fitness EvaluationThe algorithm for the map
J ={0,1,2,...}, where each joh € J containsN; operations . . . i X X
phase is shown in Algorithm 1, which aims at evaluating

(G =0,1,..,[J|-1). Achromosome contairs, ;. , N; genes oo (i.e., the makespans) of an individual. fap
that are job names (i.e., members .0f, where each jobj S T : i
Lunctlon is invoked once per individual in parallel on mplé

appears exactlyV; times. The job name appearmg_at eaCm%ppers. The mapper first obtains an ordered list of op@&stio
gene represents an operation that belongs to the job, Whg

o . y decoding the chromosome. A schedule is then built based
the actual operation is determined by the order of occueren : S s
: : - on the list, where each job in the list is placed on the schedul
of that job name, i.e., théth occurrence of joly represents

the kth operation of;. For example, with/ = 2 and N, = a_lt the earliest pos_S|bIe time. A local s_earch is p_erformed to
o fine-tune the resulting schedule [13]. First, the criticattpof
N; = 3, a chromosome may look like:

the schedule is identified as blocks of continuous operstion
[0,0,1,1,0,1] For each block, if swapping the first two operations or the

| ID | |Makespan| Generation Chromosome

double int int int[]

Fig. 2. The key-value structure to store an individual

Il. ALGORITHMS

Algorithm 1 The map function of a single generation of theAlgorithm 2 The reduce function of a single generation of
GA. An ID is required as the key, and an individual is requirethe GA.
as the value, as shown in Figure 2. function reduce(key, values)

function map(key, value)

initialization
begin count < 0; s < 5;
opList «+ decode(value.chromosome); begin
for each operatiomp in opList do if key = null then best < arg minyeyatues v-Mmakespan;
comment: add to schedule at earliest available spot print(best); return; fi
schedule.add(op); od for eachwvalue in values do
schedule.local_search() if count < s
value.makespan < schedule.getMakespan(); then window[count] < value;
output(key, value); firstWindow[count| + value;
if best.makespan > value.makespan else window[count % s| + value;
then best + value; fi reproduction(); fi
end count < count + 1; od
finalization where
output(null, best); proc reproduction() =

prevWinner < winner;
winner <— arg Min;cyindow t-makespan;

kid.chromosome < crossover(prevWinner, winner);
last two operations yields a shorter makespan then accept itif random() < 0.01 then kid.mutate(); fi

otherwise undo the swapping. Notice that swapping the firstiid.makespan < —1; ’

two operations or the last two operations will not improve kid.generation < winner.generation + 1;

the schedule, and thus can be omitted. Once a new schedul@utput(random(), kid)

is obtained by swapping operations, local search is peddrmengd

again on the new schedule until no improvement can be maggalization

The mapper then outputs the individual with the makespagy ; «— 0 to s — 1 do

updated. window|[(count + i) % s] « firstWindowil;
In addition to evaluating and outputting individuals, each reproduction(); od

mapper keeps track of the best individual it has seen. At the

end of the mapper’s lifecycle, the best individual is enditte

with the ID set to a special valuaull.

I

adopted, in whichs individuals are chosen randomly from
, if 1D = null the population and the fittest one among them is selected for
reducer h(ID)%r, otherwise (crossover. In this study is set to5 empirically. Since th_e
individuals are sent to the reducers at random, and their IDs

2) Partitioner: The partitioner assigns the individuals emitby which the reducers sort them are also random, their order
ted from the mappers to the reducers according to the IDs,iasthe input sequence to a reducer is arbitrary and without
characterized by (1), wherk(-) is a hash function and is regard to the fitnesses. It is then reasonable to use a sliding
the number of reducers. Thaull IDs are always sent to thewindow (indicated by the variableindow in Algorithm 2) of
first reducer (i.e., reducer #0). The first reducer is theeefosize s, go through the input sequence of key-value pairs, and
responsible for comparing the best individual from differe select the fittest one within the window, to approximate the
mappers, and determining the best of the best individualsacr random choices of individuals in the tournament selection.
the whole population. Otherwise, normal IDs are used astingVotice that since the window has to wrap around when it
to a hash function to determine which reducer to send t@aches the end of the input sequence, the firisidividuals
Since IDs are generated at random, each individual is senth@ve to be buffered (indicated by the varialfle stWindow)

a random reducer. for processing after the reducer has seen all individuals.

3) Reducer: Selection and Reproductioifhe algorithm When the winner of the tournament-based selection is deter-
for the reduce phase is shown in Algorithm 2, which selecisined, it is used in the reproduction and crossover proeedur
good individuals and produces descendants by crossing oi@rgenerate a new descendant. That is, the chromosomes
their chromosomes. Theeduce function is invoked once of the current and the previous winners are taken as the
per individual ID in parallel on multiple reducers. The firsfirst and the second parents in the crossover, respectively.
reducer, i.e., reducer #0, which receives the best indalgluTo preserve characteristics of the parents, a crossovér tha
from each mapper, records the best among them. Thisnigintains partially temporal relations among operatiares, (
the best solution found in this generation of the GA. lgenes) is needed. One of the crossovers proposed in [14] is
the following, an approximation of tournament selection iadopted (i.e., the “crossover 4”). The chromosomes of tksé fir

and the second parent are decoded as two lists (denoted ashe intermediate data over the network. For this reason, a
and L., respectively) of operations, and a continuous portiagood initial population is generated as suggested in [12]],

L} of Ly is chosen at random. A new individu&ld, is created which is outlined in Algorithm 3. The individuals generated
with a random ID and a list (denoted dg of operations, in this manner always vyield active schedules, in which no
which is initially identical to L. L} is then inserted td. operation can be scheduled earlier without delaying sofmerot
at the same starting position it appears/in, followed by operations or breaking a precedence constraint. The optima
a sweep throug. to remove operations contributed ly solution of JSSP is always an active schedule.

that exist inL}. Finally, the chromosome dfid is updated to

encodeL. TABLE |
. . - . PROFILES OFJSSRNSTANCES
Mutation with small probability is performed after the
crossover. Three positions of distinct symbols are rangoml [Name [#Jobs| #Machines| Optimal Makespan|
selected fromkid's chromosome, and one of the six per- FT10 10 10 930
mutations among them is applied uniformly at random. As FT120 | 20 5 1165
mentioned in [15], the importance of mutations recedes as th LA40 1 S 1222
' P SWVid | 50 10 2968

population grows. Since we are more concerned with large
population sizes, the probability of mutation is set to a lkma
value of 1%.

I1l. EXPERIMENTS

Algorithm 3 Themap function to generate initial population The JSSPs listed in Table | are tested. This problem set

of size N. can be obtained from the OR-library [16]. These problems
function map(key, value) are by no means an exhaustive list of all available problems,
J: the set of all jobs but they are chosen to represent various difficulty levels,
N the target size of population and becausg their optimal solutions are known. FT10 and
numOp: the total number of operations FT20 were first proposed by [17] and have become standard
begin benchmark problems. LA40 [18], a somewhat tricky problem,
fori « 1to N do is concerned with scheduling 15 jobs on 15 machines. The
schedule.clear(); hardest problem, SWV14 [19], consists of 50 jobs where
kid.chromosome + {}; intensive contention for machines can be expected. Thiystu
kid.generation + 0; does not put emphasis on proposing innovative algorithms
comment: C: the set of schedulable operations or on outperforming other solutions to JSSP, but shows the
C « {the 1st operation of job,Vj € J}; effects_ of a GA running Iarge_ populati_ons in parallel, as a
comment: op.est: the earliest schedulable time fop potential enhancement to existing solutions. Two expemnise
op.est + 0,Yop € C, are conducted. The first experiment shows how population
for k < 1 to numOp do sizes affect the GA in approaching a good solution; the sgtcon

p argmingpec{op.est + op.processingTime}; ~ ON€ shows how the running time can be reduced by scaling

G + {op € C s.t. op.machine = p.machine, the size of the cluster.

andop.est < p.est + p.processingTime};

A. Effects of the Population Si
q < G.randomElement(); ects of fhe Fopuiation Size

schedule.add(q); The first experiment was run on a cluster provided by

kid.chromosome = kid.chromosome + g; Google and managed by IBM [20], shared among a few

C.remove(q); universities as part of NSF's CLuUE (Qluster Explorato_ry)

C.add(g.nextOperationinJob()); Pr_qgr_am and the Google/IBM Academ_|c Cloud Computmg
updateop.est according toschedule,Yop € C; od In|t|aF|ve. The cluster used in our experiments contain&d 4

output(random(), kid); od physical nodes; each node has two single-core process8rs (2

end GHz), 4 GB memory, and two 400 GB hard drives. Although

the cluster contains a large number of machines, each n&chin
runs very old processors and is significantly slower than a
o modern server (e.g., each physical machine contains only
C. Initialization two cores, compared to eight cores in typical servers today)
Initialization of the population is performed by a separatéhe entire software stack (down to the operating system)
MapReduce job without reducers. Although many of the pré virtualized; each physical node runs one virtual machine
vious studies use random initial populations, they may irequhosting Linux. Experiments used Java 1.6 and Hadoop [21]
more generations to find a good solution. This increasesrsion 0.20.1. Population sizes= 10°, 10°, and 107 were
the overhead of MapReduce, because each MapReduce rjof with 1000 mappers and 100 reducers.
running a generation requires a certain amount of time toThe results are shown in Figure 3. As the population
initiate the mappers and the reducers, and to shuffle and sire increases, fewer generations are required to converge

(a) FT10 (b) FT20
990 T T T T 1270 T T T T
980 p=10° —o— | 1260 p=10° —eo— 7
p= 108 1250 p= 108]
970 p= 107 A _ 1240 D= 107 .
@ optimal g 1230 optimal 7]
@ 960 E g 1220 i
£ £ 1210 -
= 950 T = 1200 T
040 | 1190 -
- 1180 A AEES 568 occo00o]
930 SENERENETEEVEN N e -
! ! ! ! 1160
0 10 15 20 25 30 0 10 15 20 25 30
Generation Generation
(c) LA40 (d) Swv14
1340 ; ; ; ; ; ; 3800 [
1320 p=10° —e— 3700 1%
p=10° —x— 3600
_ 1300 p=10’ T4 _ 3500
optimal
g) P & 3400
£ 1280 T €330} .
g 1260 - g 3200 + p= 10° -
p=10% —x—
1240 | 3100 p= 107 .
3000 |- optimal -
1220 il 1 | | | } 2900 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 45

Generation Generation

Fig. 3. The results of GA with various population sizesor the problems (a) FT10, (b) FT20, (c) LA40, and (d) SWV14

)
°

Particularly in Figure 3(a), only 4 generations are reqliie § 400

reach the optimal makespan when= 107, while 18 and 26 < 350 |

generations are required when= 10 and 10°, respectively. 2 300 |

The same observation can be made in Figure 3(b), where :.cj 250 |

19 generations are required to reach the optimal makespan >
8 200

when p = 107, while 25 are required by = 10°. In =

Figure 3(c), although both experiments wijih= 10> and10° £ 150 ¢

converge at the same local minimum, the latter approaches it 2 100y

in fewer generations. Since MapReduce incurs overhead for g 50—

every generation, it is desirable to find solutions with fewe 5 0z 4 ,\jadineligst:ic;; 1648 20

generations. This can be achieved by using a larger popaolati
as shown in the results.

In addition, GAs with larger populations are more likely to
find good solutions. In Figure 3(b), the experiment wjith-
10° converges at a local minimum 1178, while the ones with
|arger popu'ation sizes y|e|d the Opt|ma| makespan of 11%qu|ati0n 0f104 individuals to solve LA40. For each cluster
Similarly, in Figure 3(c), both experiments with= 105 and Size, the GA is run for 10 generations, and the average
10° converge at 1252, while a better makespan 1233 is foufigecution times and the standard deviations are plotted in
by scaling the population size 1. In Figure 3(d), however, Figure 4. The execution time for a cluster of one machine
the effects of increasing population sizes are not phenamens shown as a baseline for comparison with other clusters
The reason may be that this problem is too hard to be sol#h multiple machines. As the number of machine instances
within a few tens of generations. More experiments witk in the cluster increases, the running time decreases as a

107 on a larger cluster must be performed to further investigai@sult of increasing computing power. It is therefore beneffi
this issue. to increase the cluster size when running GAs with large

_ population sizes.
B. Effects of the Cluster Size A typical profile of execution time for one generation is
This experiment runs the GA on Amazon’s Elastic Computhown in Table 1l. The GA is given a population of size*
Cloud (EC2) clusters of different sizes, and the completidn solve LA40. Only 1 mapper and 1 reducer are used. The
time for each generation is observed. The GA is giventatal job completion time and the cumulative running time

Fig. 4. The effects of cluster size

TABLE I
A TYPICAL PROFILE OF EXECUTION TIME WHEN RUNNING THEGA FOR
ONE GENERATION TO SOLVELA40, USING ONE MAPPER AND ONE
REDUCER THE POPULATION SIZE 1S10%.

[Job Completion Time][map() [reduce() | Overhead|

356.067 (seconds) || 331.155 7.191 17.721
100% 93.00% | 2.02% 4.98%

for the map and thereduce functions are recorded. Most
of the execution time (i.es 95%) is spent on running the

(1]
(2]
(3]
(4]
(5]

map and thereduce functions, while the remaining portion [6]

(= 5%) of the time is labeled as “overhead”. It is possible

to reduce the observed overhead by introducing programming
models that are optimized for iterative MapReduce jobshsuc

as Twister [22], which is one possible future direction.

IV. CONCLUSION

(8]

In this study, a GA for JSSP is implemented using Map{®]
Reduce, and experiments are run with various population

sizes (i.e., up tol0”) and on clusters of various sizes. Our10]

implementation of GA with MapReduce is based on [5], while

adding more GA features to cope with real-world problemﬁ,l]
including local search, non-random crossover, and nodean

initial populations. The chromosome representation ared th

schedule evaluation for JSSP also increase the complexity[12

The effects of large populations are prominent, in that a

larger population tends not only to find a better solutiort, bu

also to converge with fewer generations. The results confitt’
what was mentioned in [23, p. 198-200], but our experiments 1996.

consist of a much harder problem and much larger populatiof$! B. Park, H. Choi, and H. Kim, “A hybrid genetic algorithiior the
Moreover, having fewer generations is beneficial due to the
overall MapReduce overhead. Because for each MapRedu®g s. Luke and L. Spector, “A comparison of crossover andation in

job there exists certain initialization/shuffling overdehaving

fewer generations, and hence fewer iterations of MapRedUﬁ%]
reduces the overall overhead. The effects of cluster sizes i
also presented, which show the speedup of execution time b

increasing nodes in the cluster. This may serve as a ro

guideline regarding what cluster size to use and what sgeedu

to expect.

In general, GAs implemented with MapReduce provide nemg;

possibilities toward solving hard problems. To our knovged

this is the first implementation with modern GA features

that tackles real-world computationally intensive prole

The experiments with large populations also reveal intergs [21]
tradeoffs between population sizes and number of genesatid?2]
whereby generations must be run sequentially, but larger

populations allow us to arbitrarily parallelize.

ACKNOWLEDGMENTS

[23]

This work was supported in part by the NSF under awards
[1S-0836560 and 11S-0916043, and also in part by Google and

IBM, via the Academic Cloud Computing Initiative (ACCI).

Any opinions, findings, conclusions, or recommendations ex

pressed are the authors’ and do not necessarily reflect those

of the sponsors. The second author is grateful to Esther and

Kiri for their loving support.

REFERENCES

L. Davis et al, Handbook of genetic algorithms Van Norstrand
Reinhold, New York, 1991.

E. Aarts and J. KorstSimulated annealing and Boltzmann machines
John Wiley & Sons, New York, 1989.

F. Glover and B. Melian, “Tabu searchiletaheuristic Procedures for
Training Neutral Networksvol. 36, pp. 53-69, 2006.

J. Dean and S. Ghemawat, “MapReduce: A flexible data psing
tool,” Commun. ACMvol. 53, no. 1, pp. 72-77, 2010.

A. Verma, X. Llora, D. Goldberg, and R. Campbell, “Scaji genetic
algorithms using MapReduceProceedings of the 2009 Ninth Interna-
tional Conference on Intelligent Systems Design and Agfplins pp.
13-18, 2009.

C. Jin, C. Vecchiola, and R. Buyya, “MRPGA: An extensiohMap-
Reduce for parallelizing genetic algorithm$ZEE Fourth International
Conference on eScience, 2008. eSciencgip8 214-221, 2008.

S. Reddi and C. Ramamoorthy, “On the flow-shop sequenpiofplem
with no wait in process,Operational Research Quarterlyol. 23, no. 3,
pp. 323-331, 1972.

S. Droste, T. Jansen, and |. Wegener, “Upper and lowemtsuor
randomized search heuristics in black-box optimizatiohlieory of
Computing Systemsol. 39, no. 4, pp. 525-544, 2006.

C. Witt, “Population size versus runtime of a simple eu@nary
algorithm,” Theoretical Computer Scienceol. 403, no. 1, pp. 104-120,
2008.

C. Bierwirth, D. Mattfeld, and H. Kopfer, “On permutati representa-
tions for scheduling problemsParallel Problem Solving from Nature—
PPSN IV pp. 310-318, 1996.

R. Cheng, M. Gen, and Y. Tsujimura, “A tutorial survey fib-
shop scheduling problems using genetic algorithms—I. &smtation,”
Computers and Industrial Engineeringol. 30, no. 4, pp. 983-997,
1996.

] B. Giffler and G. Thompson, “Algorithms for solving proction-

scheduling problemsOperations Researcivol. 8, no. 4, pp. 487-503,
1960.

E. Nowicki and C. Smutnicki, “A fast taboo search algiom for the
job shop problem,;Management Scienc®ol. 42, no. 6, pp. 797-813,

job shop scheduling problemsComputers & industrial engineering
vol. 45, no. 4, pp. 597-613, 2003.

genetic programming,’Genetic Programmingvol. 97, pp. 240-248,
1997.

J. Beasley, “OR-Library: Distributing test problemg électronic mail,”
Journal of the Operational Research Socjetgl. 41, no. 11, pp. 1069-
1072, 1990.

J. Muth and G. Thompsomndustrial scheduling Prentice-Hall, 1963.
S. Lawrence, “Resource constrained project schegiuhm experimental
investigation of heuristic scheduling techniques (Sumglet),” Ph.D.
Thesis Graduate School of Industrial Administration, Gagie-Mellon
University, Pittsburgh, PA1984.

R. H. Storer, S. D. Wu, and R. Vaccari, “New search sp&oesequenc-
ing problems with application to job shop schedulinfanagement
Science vol. 38, no. 10, pp. 1495-1509, October 1992.

20] “http://www.google.com/intl/en/press/pressrel/

20071008ibm_univ.html.”

T. White, Hadoop: The Definitive Guide O'Reilly Media, Inc., 2009.

J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. Bae, id, @nd

G. Fox, “Twister: A runtime for iterative MapReduce?roceedings of
the First International Workshop on MapReduce and its Agapibns
(MAPREDUCE'10) of ACM HPDC201(p. 20-25, 2010.

J. Koza,Genetic programming: On the programming of computers by
means of natural selection The MIT press, 1992.

