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Abstract—Inspired by Darwinian evolution, a genetic algo-
rithm (GA) approach is one popular heuristic method for solving
hard problems such as the Job Shop Scheduling Problem (JSSP),
which is one of the hardest problems lacking efficient exact
solutions today. It is intuitive that the population size ofa GA may
greatly affect the quality of the solution, but it is unclear what
are the effects of having population sizes that are significantly
greater than typical experiments. The emergence of MapReduce,
a framework running on a cluster of computers that aims to
provide large-scale data processing, offers great opportunities to
investigate this issue. In this paper, a GA is implemented toscale
the population using MapReduce. Experiments are conducted
on a large cluster, and population sizes up to107 are inspected.
It is shown that larger population sizes not only tend to yield
better solutions, but also require fewer generations. Therefore, it
is clear that when dealing with a hard problem such as JSSP, an
existing GA can be improved by massively scaling up populations
with MapReduce, so that the solution can be parallelized and
completed in reasonable time.

I. I NTRODUCTION

In solving hard problems where there lacks efficient exact
solutions, heuristic approaches, including genetic algorithms
(GAs) [1], simulated annealing [2], and tabu search [3], have
become popular alternatives. Among them, GAs can be easily
parallelized to scale its computing ability because of its intrin-
sic parallelism, and hence offer great potential toward solving
hard problems. GAs represent potential solutions by strings of
symbols, or linear chromosome, and simulate the process of
natural selection, crossover, and mutation among a population
of chromosomes, as inspired by Darwinian evolution. Fitnesses
of chromosomes are assessed based on the quality of the
solutions they represent, and the fitter chromosomes are given
higher probability of survival and reproduction. In this manner,
a good solution is likely to be evolved after a number of
generations.

The emergence of the MapReduce framework [4] provides
new opportunities to empower GAs with the ability to handle
large populations (e.g., millions of individuals). Responding
to the need to process huge volumes of data over the growing
Internet, MapReduce was designed to support parallel large-
scale data processing on a cluster of commodity hardware,
which is also known as cloud computing. It aims to provide
seamless scalability such that as more machines are added
to the cluster, computing capability grows almost linearly. As
shown in Figure 1, the framework consists of two types of
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Fig. 1. The architecture of the MapReduce framework

components: themappersand the reducers, which execute
map and reduce tasks by invoking user-definedmap and
reduce functions, respectively. Each mapper and reducer
can be located on separate machines. In a MapReduce job,
each mapper processes a portion of the input data in the
form of key-value pairs, where each pair is sent as input
to the map function. The map function produces zero or
more intermediate key-value pairs. These intermediate data
are then shuffled, sorted, and sent to the reducers. How these
intermediate data are dispatched is controlled by another user-
defined component called thepartitioner. The reducers process
the intermediate data and output key-value pairs as the final
results. The intermediate data sent to a reducer are aggregated
and sorted by the keys, where thereduce function is called
once for every key. As proposed in [5] and [6], GAs can be
fitted into this framework by computing each generation as a
separate MapReduce job. Since MapReduce can handle input
data of large sizes (e.g., terabytes and even petabytes), itis
possible to encode the population of GAs as the input/output
data, and benefit from a large population.

To assess the ability of GAs with large populations, the
Job Shop Scheduling Problem (JSSP) is chosen as the target
problem to be solved. It has drawn much attention not only
for its practical applications in operation research, but also
for its computational complexity. The objective is to schedule
|J | jobs on |M | machines such that the makespan, i.e., the



overall time needed to complete all jobs, is minimized. Each
job consists of an ordered list of operations, each of which
requires being processed by a certain machine for a certain
uninterrupted duration. The ordering of operations represents
precedences or dependencies among them. Typically, each job
contains |M | operations requiring different machines. Two
constraints must be satisfied when scheduling an operation of
durationd at timet: (1) all precedent operations are completed
beforet; (2) no other operations are scheduled to the required
machine fromt to t + d. The Traveling Salesman Problem
(TSP), a well known strong NP-complete problem, is a special
case of JSSP [7]. Therefore, JSSP is much harder than TSP
and is among the hardest combinatorial optimization problems.
Since there are no efficient exact solutions to date, a heuristic
approach is needed.

In this study, a GA with massive populations for solving
JSSP is implemented using MapReduce. The GA is non-trivial
in that it includes encoding/decoding chromosomes, building
schedules, performing local searches, handling tournament-
base selections, and processing non-random crossover. As it
has been suggested by theoretical research [8], [9] that GAs
with large population sizes are advantageous in solving hard
problems, our GA for JSSP is given massive populations and
run on a large cluster. The experimental results show the
effects of having massive populations, and confirm that large
populations indeed help in finding good solutions. Another
experiment is conducted to show that execution time decreases
as the size of the cluster grows.

To our knowledge, this is the first implementation of genetic
algorithms in MapReduce that takes advantage of state-of-
the-art techniques [10]–[14] to solve challenging real-world
problems. Although genetic algorithms have previously been
proposed for MapReduce [5] [6], the previous work tackled a
far simpler problem and lacked many features of modern GA
techniques. Use of MapReduce allowed us to explore popula-
tion sizes that are significantly larger than typical experiments,
and revealed interesting tradeoffs between population sizes and
number of generations.

II. A LGORITHMS

This section describes in detail the algorithms used in this
paper and how they are implemented in MapReduce.

A. Representation

The operation-based representation is adopted [10], [11] to
encode and decode the chromosomes. Consider a set of jobs
J = {0, 1, 2, ...}, where each jobj ∈ J containsNj operations
(j = 0, 1, ..., |J |−1). A chromosome contains

∑

j∈J Nj genes
that are job names (i.e., members ofJ), where each jobj
appears exactlyNj times. The job name appearing at each
gene represents an operation that belongs to the job, where
the actual operation is determined by the order of occurrence
of that job name, i.e., thekth occurrence of jobj represents
the kth operation ofj. For example, withJ = 2 andN0 =
N1 = 3, a chromosome may look like:

[0, 0, 1, 1, 0, 1]

where the first operation of job0 comes first, followed by the
second operation of job0, followed by the first operation of
job 1, and so on. Notice that any permutations of the genes will
always yield valid schedules if the operations are added to the
schedule in the order of their appearance in the chromosome.

The data structure used to store an individual of the GA
is shown in Figure 2. This key-value structure is used as the
input, the intermediate, and the output data of MapReduce.
The key part contains an ID∈ [0, 1) assigned to each
individual uniformly at random, and the value part contains
a makespan value, a generation value, and the chromosome.
The makespan value stores the length of the schedule implied
by the chromosome, that is, the length of time between the
execution of the earliest operation and the completion of the
latest one. The fitness can be evaluated directly through the
makespan value, where a lower makespan value represents
a fitter individual. The generation value facilitates tracing of
evolution by storing the number of generations descended from
the original population. Finally, the chromosome is storedas
an array of integers.

ID Makespan ChromosomeGeneration

Key Value

double int int int[]

Fig. 2. The key-value structure to store an individual

B. The genetic algorithm

The main GA is implemented in the MapReduce frame-
work where each generation of the GA is performed by a
MapReduce job. The data structure shown in Figure 2 is
used as the input and output key-value pairs of both the map
and reduce phases. The map phase evaluates the fitnesses of
the population, where the schedules are built according to
the chromosome, and local search is performed to find the
makespans. The fittest individual is recorded. The partitioner
dispatches the resulting individuals to random reducers by
referring to their randomly generated IDs. The reduce phase
processes selection and crossover, and produces a new gen-
eration population as the output. After the new population
has been generated, a new MapReduce job is created for this
new generation. This process is continued until a satisfactory
solution, if not optimal, to the JSSP is found.

1) Mapper: Fitness Evaluation:The algorithm for the map
phase is shown in Algorithm 1, which aims at evaluating
the fitnesses (i.e., the makespans) of an individual. Themap
function is invoked once per individual in parallel on multiple
mappers. The mapper first obtains an ordered list of operations
by decoding the chromosome. A schedule is then built based
on the list, where each job in the list is placed on the schedule
at the earliest possible time. A local search is performed to
fine-tune the resulting schedule [13]. First, the critical path of
the schedule is identified as blocks of continuous operations.
For each block, if swapping the first two operations or the



Algorithm 1 The map function of a single generation of the
GA. An ID is required as the key, and an individual is required
as the value, as shown in Figure 2.
function map(key, value)

begin
opList← decode(value.chromosome);
for each operationop in opList do

comment: add to schedule at earliest available spot
schedule.add(op); od

schedule.local search()
value.makespan← schedule.getMakespan();
output(key, value);
if best.makespan > value.makespan

then best← value; fi
end
finalization
output(null, best);

last two operations yields a shorter makespan then accept it,
otherwise undo the swapping. Notice that swapping the first
two operations or the last two operations will not improve
the schedule, and thus can be omitted. Once a new schedule
is obtained by swapping operations, local search is performed
again on the new schedule until no improvement can be made.
The mapper then outputs the individual with the makespan
updated.

In addition to evaluating and outputting individuals, each
mapper keeps track of the best individual it has seen. At the
end of the mapper’s lifecycle, the best individual is emitted
with the ID set to a special valuenull.

reducer ←

{

0, if ID = null

h(ID)%r, otherwise
(1)

2) Partitioner: The partitioner assigns the individuals emit-
ted from the mappers to the reducers according to the IDs, as
characterized by (1), whereh(·) is a hash function andr is
the number of reducers. Thenull IDs are always sent to the
first reducer (i.e., reducer #0). The first reducer is therefore
responsible for comparing the best individual from different
mappers, and determining the best of the best individual across
the whole population. Otherwise, normal IDs are used as input
to a hash function to determine which reducer to send to.
Since IDs are generated at random, each individual is sent to
a random reducer.

3) Reducer: Selection and Reproduction:The algorithm
for the reduce phase is shown in Algorithm 2, which selects
good individuals and produces descendants by crossing over
their chromosomes. Thereduce function is invoked once
per individual ID in parallel on multiple reducers. The first
reducer, i.e., reducer #0, which receives the best individuals
from each mapper, records the best among them. This is
the best solution found in this generation of the GA. In
the following, an approximation of tournament selection is

Algorithm 2 The reduce function of a single generation of
the GA.
function reduce(key, values)

initialization
count← 0; s← 5;
begin

if key = null then best← argminv∈values v.makespan;
print(best); return; fi

for eachvalue in values do
if count < s

then window[count]← value;
firstWindow[count]← value;

else window[count % s]← value;
reproduction(); fi

count← count+ 1; od
where
proc reproduction() ≡
prevWinner← winner;
winner← argmini∈window i.makespan;
kid.chromosome← crossover(prevWinner, winner);
if random() < 0.01 then kid.mutate(); fi
kid.makespan← −1;
kid.generation← winner.generation+ 1;
output(random(), kid); .

end
finalization
for i← 0 to s− 1 do

window[(count + i) % s]← firstWindow[i];
reproduction(); od

adopted, in whichs individuals are chosen randomly from
the population and the fittest one among them is selected for
crossover. In this study,s is set to5 empirically. Since the
individuals are sent to the reducers at random, and their IDs
by which the reducers sort them are also random, their order
in the input sequence to a reducer is arbitrary and without
regard to the fitnesses. It is then reasonable to use a sliding
window (indicated by the variablewindow in Algorithm 2) of
sizes, go through the input sequence of key-value pairs, and
select the fittest one within the window, to approximate the
random choices ofs individuals in the tournament selection.
Notice that since the window has to wrap around when it
reaches the end of the input sequence, the firsts individuals
have to be buffered (indicated by the variablefirstWindow)
for processing after the reducer has seen all individuals.

When the winner of the tournament-based selection is deter-
mined, it is used in the reproduction and crossover procedure
to generate a new descendant. That is, the chromosomes
of the current and the previous winners are taken as the
first and the second parents in the crossover, respectively.
To preserve characteristics of the parents, a crossover that
maintains partially temporal relations among operations (i.e.,
genes) is needed. One of the crossovers proposed in [14] is
adopted (i.e., the “crossover 4”). The chromosomes of the first



and the second parent are decoded as two lists (denoted asL1

andL2, respectively) of operations, and a continuous portion
L′
1 of L1 is chosen at random. A new individual,kid, is created

with a random ID and a list (denoted asL) of operations,
which is initially identical toL2. L′

1
is then inserted toL

at the same starting position it appears inL1, followed by
a sweep throughL to remove operations contributed byL2

that exist inL′
1
. Finally, the chromosome ofkid is updated to

encodeL.
Mutation with small probability is performed after the

crossover. Three positions of distinct symbols are randomly
selected fromkid’s chromosome, and one of the six per-
mutations among them is applied uniformly at random. As
mentioned in [15], the importance of mutations recedes as the
population grows. Since we are more concerned with large
population sizes, the probability of mutation is set to a small
value of 1%.

Algorithm 3 The map function to generate initial population
of sizeN .
function map(key, value)

J : the set of all jobs
N : the target size of population
numOp: the total number of operations
begin

for i← 1 to N do
schedule.clear();
kid.chromosome← {};
kid.generation← 0;
comment: C: the set of schedulable operations
C ← {the 1st operation of jobj, ∀j ∈ J};
comment: op.est: the earliest schedulable time forop
op.est← 0, ∀op ∈ C;
for k ← 1 to numOp do

p← argminop∈C{op.est+ op.processingT ime};
G← {op ∈ C s.t. op.machine = p.machine,

andop.est < p.est+ p.processingT ime};
q ← G.randomElement();
schedule.add(q);
kid.chromosome = kid.chromosome + q;
C.remove(q);
C.add(q.nextOperationInJob());
updateop.est according toschedule, ∀op ∈ C; od

output(random(), kid); od
end

C. Initialization

Initialization of the population is performed by a separate
MapReduce job without reducers. Although many of the pre-
vious studies use random initial populations, they may require
more generations to find a good solution. This increases
the overhead of MapReduce, because each MapReduce job
running a generation requires a certain amount of time to
initiate the mappers and the reducers, and to shuffle and sort

the intermediate data over the network. For this reason, a
good initial population is generated as suggested in [12], [14],
which is outlined in Algorithm 3. The individuals generated
in this manner always yield active schedules, in which no
operation can be scheduled earlier without delaying some other
operations or breaking a precedence constraint. The optimal
solution of JSSP is always an active schedule.

TABLE I
PROFILES OFJSSPINSTANCES

Name #Jobs #Machines Optimal Makespan

FT10 10 10 930
FT20 20 5 1165
LA40 15 15 1222

SWV14 50 10 2968

III. E XPERIMENTS

The JSSPs listed in Table I are tested. This problem set
can be obtained from the OR-library [16]. These problems
are by no means an exhaustive list of all available problems,
but they are chosen to represent various difficulty levels,
and because their optimal solutions are known. FT10 and
FT20 were first proposed by [17] and have become standard
benchmark problems. LA40 [18], a somewhat tricky problem,
is concerned with scheduling 15 jobs on 15 machines. The
hardest problem, SWV14 [19], consists of 50 jobs where
intensive contention for machines can be expected. This study
does not put emphasis on proposing innovative algorithms
or on outperforming other solutions to JSSP, but shows the
effects of a GA running large populations in parallel, as a
potential enhancement to existing solutions. Two experiments
are conducted. The first experiment shows how population
sizes affect the GA in approaching a good solution; the second
one shows how the running time can be reduced by scaling
the size of the cluster.

A. Effects of the Population Size

The first experiment was run on a cluster provided by
Google and managed by IBM [20], shared among a few
universities as part of NSF’s CLuE (Cluster Exploratory)
Program and the Google/IBM Academic Cloud Computing
Initiative. The cluster used in our experiments contained 414
physical nodes; each node has two single-core processors (2.8
GHz), 4 GB memory, and two 400 GB hard drives. Although
the cluster contains a large number of machines, each machine
runs very old processors and is significantly slower than a
modern server (e.g., each physical machine contains only
two cores, compared to eight cores in typical servers today).
The entire software stack (down to the operating system)
is virtualized; each physical node runs one virtual machine
hosting Linux. Experiments used Java 1.6 and Hadoop [21]
version 0.20.1. Population sizesp = 105, 106, and107 were
run with 1000 mappers and 100 reducers.

The results are shown in Figure 3. As the population
size increases, fewer generations are required to converge.



 930

 940

 950

 960

 970

 980

 990

 0  5  10  15  20  25  30

M
ak

es
pa

n

Generation

(a) FT10

p = 105

p = 106

p = 107

optimal

 1160
 1170
 1180
 1190
 1200
 1210
 1220
 1230
 1240
 1250
 1260
 1270

 0  5  10  15  20  25  30

M
ak

es
pa

n

Generation

(b) FT20

p = 105

p = 106

p = 107

optimal

 1220

 1240

 1260

 1280

 1300

 1320

 1340

 0  5  10  15  20  25  30  35  40

M
ak

es
pa

n

Generation

(c) LA40

p = 105

p = 106

p = 107

optimal

 2900

 3000

 3100

 3200

 3300

 3400

 3500

 3600

 3700

 3800

 0  5  10  15  20  25  30  35  40  45
M

ak
es

pa
n

Generation

(d) SWV14

p = 105

p = 106

p = 107

optimal

Fig. 3. The results of GA with various population sizesp for the problems (a) FT10, (b) FT20, (c) LA40, and (d) SWV14

Particularly in Figure 3(a), only 4 generations are required to
reach the optimal makespan whenp = 107, while 18 and 26
generations are required whenp = 106 and105, respectively.
The same observation can be made in Figure 3(b), where
19 generations are required to reach the optimal makespan
when p = 107, while 25 are required byp = 106. In
Figure 3(c), although both experiments withp = 105 and106

converge at the same local minimum, the latter approaches it
in fewer generations. Since MapReduce incurs overhead for
every generation, it is desirable to find solutions with fewer
generations. This can be achieved by using a larger population
as shown in the results.

In addition, GAs with larger populations are more likely to
find good solutions. In Figure 3(b), the experiment withp =
105 converges at a local minimum 1178, while the ones with
larger population sizes yield the optimal makespan of 1165.
Similarly, in Figure 3(c), both experiments withp = 105 and
106 converge at 1252, while a better makespan 1233 is found
by scaling the population size to107. In Figure 3(d), however,
the effects of increasing population sizes are not phenomenal.
The reason may be that this problem is too hard to be solved
within a few tens of generations. More experiments withp >

107 on a larger cluster must be performed to further investigate
this issue.

B. Effects of the Cluster Size

This experiment runs the GA on Amazon’s Elastic Compute
Cloud (EC2) clusters of different sizes, and the completion
time for each generation is observed. The GA is given a
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population of104 individuals to solve LA40. For each cluster
size, the GA is run for 10 generations, and the average
execution times and the standard deviations are plotted in
Figure 4. The execution time for a cluster of one machine
is shown as a baseline for comparison with other clusters
with multiple machines. As the number of machine instances
in the cluster increases, the running time decreases as a
result of increasing computing power. It is therefore beneficial
to increase the cluster size when running GAs with large
population sizes.

A typical profile of execution time for one generation is
shown in Table II. The GA is given a population of size104

to solve LA40. Only 1 mapper and 1 reducer are used. The
total job completion time and the cumulative running time



TABLE II
A TYPICAL PROFILE OF EXECUTION TIME WHEN RUNNING THEGA FOR

ONE GENERATION TO SOLVELA40, USING ONE MAPPER AND ONE

REDUCER. THE POPULATION SIZE IS104 .

Job Completion Time map() reduce() Overhead

356.067 (seconds) 331.155 7.191 17.721
100% 93.00% 2.02% 4.98%

for the map and thereduce functions are recorded. Most
of the execution time (i.e.,≈ 95%) is spent on running the
map and thereduce functions, while the remaining portion
(≈ 5%) of the time is labeled as “overhead”. It is possible
to reduce the observed overhead by introducing programming
models that are optimized for iterative MapReduce jobs, such
as Twister [22], which is one possible future direction.

IV. CONCLUSION

In this study, a GA for JSSP is implemented using Map-
Reduce, and experiments are run with various population
sizes (i.e., up to107) and on clusters of various sizes. Our
implementation of GA with MapReduce is based on [5], while
adding more GA features to cope with real-world problems,
including local search, non-random crossover, and non-random
initial populations. The chromosome representation and the
schedule evaluation for JSSP also increase the complexity.

The effects of large populations are prominent, in that a
larger population tends not only to find a better solution, but
also to converge with fewer generations. The results confirm
what was mentioned in [23, p. 198-200], but our experiments
consist of a much harder problem and much larger populations.
Moreover, having fewer generations is beneficial due to the
overall MapReduce overhead. Because for each MapReduce
job there exists certain initialization/shuffling overhead, having
fewer generations, and hence fewer iterations of MapReduce,
reduces the overall overhead. The effects of cluster sizes is
also presented, which show the speedup of execution time by
increasing nodes in the cluster. This may serve as a rough
guideline regarding what cluster size to use and what speedup
to expect.

In general, GAs implemented with MapReduce provide new
possibilities toward solving hard problems. To our knowledge,
this is the first implementation with modern GA features
that tackles real-world computationally intensive problems.
The experiments with large populations also reveal interesting
tradeoffs between population sizes and number of generations,
whereby generations must be run sequentially, but larger
populations allow us to arbitrarily parallelize.
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