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Abstract—We use the term “neurocognitive architecture” here
to refer to any artificially intelligent agent where cognitive func-
tions are implemented using brain-inspired neurocomputational
methods. Creating and studying neurocognitive architectures is
a very active and increasing focus of research efforts. We have
recently been exploring the use of neural activity limit cycles
as representations of perceived external information in self-
organizing maps (SOMs). Specifically, we have been examining
limit cycle representations in terms of their compatibility with
self-organizing map formation and as working memory encodings
for cognitively-relevant stimuli (e.g., for images of objects and
their corresponding names expressed as phoneme sequences [1]).
Here we evaluate the use of limit cycle representations in a new
context of relevance to any cognitive agent: representing a spatial
location. We find that, following repeated exposure to external 2D
coordinate input values, robust limit cycles occur in a network’s
map region, the limit cycles representing nearby locations in
external space are close to one another in activity state space, and
the limit cycles representing widely separated external locations
are very different from one another. Further, and in spite of the
continually varying activity patterns in the network (instead of the
fixed activity patterns used in most SOM work), map formation
based on the learned limit cycles still occurs. We believe that
these results, along with those in our earlier work, make limit
cycle representations potentially useful for encoding information
in the working memory of neurocognitive architectures.

I. INTRODUCTION

Interest in developing intelligent agents based on neurocog-
nitive architectures has been accelerating during recent years.
By neurocognitive architectures (also called biologically-
inspired cognitive agents), we mean artificially intelligent
systems where cognitive functions are implemented using
brain-inspired neural networks. Often such systems try to
create neuro-anatomically grounded simulations of all or major
portions of human/mammalian brain structure and function,
or at least major subsystems of the brain that span multiple
cortical regions. Thus relevant recent work in this area has
involved models that vary from extremely large networks of
biologically-realistic spiking neurons to those that are more
abstract, based on a higher level of components such as cortical
columns, or are focused on simultaneously supporting cogni-
tive functions [2]–[6]. Such work is likely to increase rapidly
during the coming decade, in part due to major recent research
funding initiatives (the Human Brain Project in Europe, the
BRAIN Initiative in the US, etc. [7]).

Self-organizing maps (SOMs) have received relatively little

attention so far in large-scale neurocognitive architectures,
something that is surprising given the tremendous interest in
neuroscience in “mapping” the brain. Self-organizing maps are
artificial neural networks initially inspired by maps in biolog-
ical neural systems [8], [9]. They learn, using unsupervised
methods, to project vectors in a high-dimensional input space
onto a low-dimensional (usually 2D) lattice of artificial neu-
rons. This projection preserves topological relationships of the
input space — nearby neurons in a trained map are typically
sensitive to similar input patterns, although sudden jumps may
also occur. SOMs are important neuocomputational tools in
part due to their frequent use for clustering and visualizing
complex high-dimensional data that may otherwise be difficult
to understand [9]–[11]. They have been applied in a wide range
of fields, such as robotic control, weather monitoring, genome
analysis, and economic modeling, to name just a few examples.
At the same time, SOMs are also important as brain models.
Sensorimotor maps are a common phenomenon in the brain,
most famously in the neocortex, and SOMs have been success-
ful in modeling many biologically observed cortical properties,
such as self-organization of somatosensory and visual cortical
regions [12], [13], the alignment of multiple feature maps [14],
the formation of mirror-symmetric topographic maps [15], and
related cognitive phenomena [16].

A fundamental barrier to adopting SOMs in large-scale
neurocognitive architectures, and one that is central to the
work reported below, is that most past SOMs have used a
static representation of information. By this we mean that each
input pattern or sequence of patterns is typically represented
by a single fixed activation pattern over the map layer, without
considering how that activation pattern evolves with time. In
conventional SOMs, activation patterns are driven directly by
fixed input stimuli, and thus remain static until external control
mechanisms alter or reset the map layer. This remains true
even in SOMs processing temporal sequences: even though
the map regions have changing activation patterns over time,
the representation that encodes a whole input sequence is
still a single spatial activity pattern that is chosen from the
series of changing activation patterns (e.g., the activation
pattern that occurs in response to the last element of an input
sequence [17]). A sequence’s representation is therefore still
static. Importantly, such a static representation is typically
transient — it occurs in a SOM for only a short time in-
between updates of the SOM’s activation. For a downstream
neural component to access a transient representation like this,
it has to either implement a precise timing control or artificially



“freeze” the SOM’s activation state. In both cases, a priori
knowledge about the timing of the transient representation is
required.

In the context of building large-scale neurocognitive ar-
chitectures, using static representations for SOMs can also
introduce biological implausibility. For example, biological
neural systems generally do not exist in static activation
states, and they are unlikely to operate solely based on fixed
spatial patterns. On the contrary, biological systems are clearly
characterized by prominent ongoing rhythmic oscillatory ac-
tivity [18], [19], and there is substantial evidence that cognitive
functions such as memory are strongly related to this rhythmic
oscillation of neural activities [20]. Computational models for
non-fixed point neurodynamics has been intensively studied in
several types of neural networks [21]–[25], including attractor
networks, oscillator networks, reservoir networks, and so on.
However, the oscillatory nature of this ongoing activity has
rarely been accounted for in past work on SOMs, although
there are exceptions. In [26], a SOM with explicit phase
variables for each node is used to detect the periods of
oscillatory input stimuli, while in [27], a conventional SOM is
based on spiking neurons that exhibit periodic firing behaviors.
However, the oscillatory activation in both of these studies is
a direct result of the input stimuli being periodic, not of the
map layer’s activation dynamics. It is unclear if they would
exhibit any oscillatory activation at all should the input become
aperiodic or unavailable, and the issue of whether oscillations
would continue or what they would represent if they did occur
is not considered.

Motivated by the above issues, here we investigate a
new dynamic representation for use in SOMs that involves
not only spatial patterns but also temporal extension in the
form of map limit cycle attractors. To our knowledge, our
approach is the first attempt to encode external stimuli using
activity limit cycles in SOMs. As a first step, our very recent
work [1] studied this issue in situations where each input
pattern/sequence (phonemes and images) is in the form of a
binary-valued activation pattern. In this initial experiment, we
found that short variable-length limit cycle attractors emerged
in the state space of a multi-winner SOM. The limit cycles
obtained were self-sustained and persisted after the input that
triggered them terminated, and they can therefore be viewed
as a candidate representation for working memory. We also
showed that the resulting limit cycles possess properties that
are appealing for representations, and that map formation, a
defining phenomenon shared by most variants of SOMs, occurs
despite using a limit cycle dynamics.

However, the generality of these initial results is unclear.
For example, it is unclear how real-valued inputs, as opposed
to binary inputs reported in our previous work, affect the
dynamics of a SOM, or whether a map will even form under
these conditions. Additionally, it is unknown how the SOM
will respond to new inputs that have never been seen during
training, since our previous work intentionally used the same
data set for both training SOMs and evaluating resulting limit
cycles. In this work, we study for the first time the limit
cycle dynamics of a SOM using real-valued inputs, which are
spatial coordinates of a 2D surface, and using separate training
and evaluation data. This specific application (location in 2D
space) is motivated in part by its obvious relevance to cognitive

agents. The research question being asked is whether limit
cycles can be obtained at all, as well as whether map formation
will occur in the trained SOM, under these new conditions. If
so, our goal is to evaluate the nature of the emerged limit
cycles and their suitability to serve as internal representations
for real-valued stimuli. In particular, using real-valued spatial
locations as inputs allows us to look closely at how locations
are organized in their representation space, which is composed
of spatiotemporal limit cycle states. A central issue here is
whether nearby locations are represented using similar limit
cycles. This was not discussed in our previous work using
binary features [1] partly because the distances between binary
features are less continuous than real-valued inputs used here.

II. METHODS

This study uses a one-shot multi-winner SOM with locally
recurrent feedback connections based on [17]. Each fixed real-
valued input pattern is presented to the SOM for a fixed
number of time steps, after which the input pattern is removed
while the SOM is allowed to continue running and adapting
without external input. This continuation of activation and
adaptation is a key component of our approach. As a result, the
SOM generates a sparsely-coded activation pattern at each time
step, retaining time-varying activity indefinitely after external
input ends.

The artificial neurons (nodes) in the SOM are organized in
a 2D rectangular grid as illustrated in Fig. 1. The neighborhood
of a node i is the set of nodes that are located within a fixed
radius r of the node i. Box distances are measured between
nodes on the grid. Formally, let Ni denote the neighborhood
of node i:

Ni = {k | k 6= i and d(i, k) ≤ r} , (1)
d(i, k) = max (|row i − rowk|, |columni − columnk|) , (2)

where the neighborhood radius is fixed as r = 2 throughout
this study.

Each node i in the SOM receives two sets of connections
(see Fig. 1 for an example). The first set consists of full con-
nections from an external source of stimuli. These connections
represent the afferent input of the SOM. Let x(t) denote the
external input vector at time t, and wi denote the weight values
of the afferent connections of node i. The second set consists
of topographical recurrent connections from neighboring nodes
of node i, Ni. Let ui denote the weight values of the recurrent
connections. For generality, let ui contain as many elements as
the nodes in the SOM, only that each element is permanently
set to zero if its corresponding node is not in Ni. Notice that
by definition there is no self link from node i to itself, i.e.,
uii = 0 for each i. The net input for node i can then be
expressed as

ini(t) = α1w
T
i x(t) + α2u

T
i a(t− 1), (3)

where α1 = 0.64 and α2 = 0.36 are constant parameters
specifying the relative weighting between afferent and recur-
rent connections (values are taken from [17]), and a(t − 1)
represents the activation vector of the SOM at the previous
time step. It is assumed that the initial activation of the SOM is
zero, i.e., a(t = −1) = 0. A one-shot multi-winner activation



Fig. 1. A small example 7 × 7 SOM for illustrative purposes. Each node
in the SOM has two sets of connections: fully-connected afferent connections
and topographic recurrent connections (radius 2). For readability, only a small
number of nodes are illustrated and incoming links for only node i are drawn.
Shaded nodes indicate the neighborhood of node i (radius 2). Dotted grid lines
do not represent connections but are drawn to indicate node adjacency.

rule is used to determine a(t), t ≥ 0, from net input, where
each ai(t) ∈ [0, 1] is calculated as:

winners(t) = {k | ink(t) > in l(t),∀l ∈ Nk} , (4)

ai(t) = min
(
1,
∑
k∈Ni∩winners(t) γ

d(i,k)
)
. (5)

Winners are nodes that have the highest net input in their
local neighborhood. The activation level for each node is
determined by how close it is to a winner node. The winners
themselves are maximally activated, while their surrounding
nodes have lower activation levels based on their distance from
the winners. Together each winner node and its neighbors form
a peak of activation centered at the winner. The shape of the
peaks depends on the decay parameter γ (0 ≤ γ < 1). A
smaller γ makes steeper peaks.

The weight adaptation for the afferent connections follows
competitive Hebbian learning:

ŵi(t+ 1) = wi(t) + µ1ai(t)x(t), (6)
wi(t+ 1) = ŵi(t+ 1)/‖ŵi(t+ 1)‖2, (7)

where µ1 is the learning rate.

The topographic recurrent connections are adapted using
temporally asymmetric Hebbian learning [17], which is based
on biological evidence that the efficacy of a synapse is
strengthened if presynaptic firing precedes the postsynaptic
firing in a 20 to 50 ms time window [28]–[30]. The weight
value uik ∈ ui for each connection from node k to node i is
updated as:

gi(t) = max (0, ai(t)− ai(t− 1)) , (8)
ûik(t+ 1) = uik(t) + µ2ak(t− 1)gi(t), (9)
uik(t+ 1) = ûik(t+ 1)/

∑
l ûil(t+ 1), (10)

where µ2 is again the learning rate. The value of gi(t) specifies
that the increase, rather than the value, of the activation level
is taken into consideration.

For the specific spatial location application that we consider
here, each external input represents the 2D coordinates (x, y)
of a point within a 1×1 square, where 0 ≤ x < 1, 0 ≤ y < 1.
In practice, as in [17], each point (x, y) is projected to a unit
sphere in order to obtain normalized vectors. The actual input
vector becomes (a, b, c) where a = x/

√
2, b = y/

√
2, and

c =
√
2− x2 − y2/

√
2. The training data set is composed of

TABLE I. PARAMETERS FOR NONLINEARLY DECREASING FUNCTIONS
USED DURING TRAINING

z zinit zfin zinfl zσ
µ1 0.44 0 0.4 0.0001
µ2 0.62 0 0.8 0.04
γ 0.37 0 0.2 0.16

300 random points uniformly sampled within the 1×1 area. On
the other hand, the evaluation, or testing, data set is composed
of 100 grid points located at x, y ∈ {0, 0.1, 0.2, ..., 0.9}.

The SOM is trained for 1000 epochs using the training
data set. In each epoch, each vector in the training data set is
presented to the SOM for 5 time steps (starting from t = 0),
after which the SOM continues to update its activation states
and adapt for another 5 time steps (determined empirically)
without external input, i.e., with afferent activity x(t) = 0.
The activation and learning rules are applied accordingly
throughout the 10 time steps for each input, although during
the last 5 time steps, only recurrent weights are updated
while the afferent weights are unchanged since the afferent
input is all zeros (see Eq. 6). This continuation of activation
and adaptation is critical to our approach, since it allows us
to obtain and observe the on-going activation dynamics that
naturally occurs after each external stimulus ends.

The learning rates µ1, µ2 and the peak activity decay
parameter γ decrease nonlinearly as the epoch number pro-
gresses, according to the function z = zfin + (zinit − zfin)/(1 +
exp((φ− zinfl)/zσ)), where z is a parameter (µ1, µ2, or γ)
and φ is the fraction of epochs completed. Relevant parameter
values are listed in Table I. This function simulates the widely-
adopted two phase training often used with SOMs, namely
a rough organization phase with large learning rates and
neighborhood sizes, followed by a fine-tuning phase with small
learning rates and neighborhood sizes.

After training, all weights are fixed, and the peak activity
decay parameter is set to γ = 0, i.e., all winners have
activation level 1 and non-winners 0. Each vector in the
evaluation data set is presented to the SOM for 5 time steps,
and the activity attractor naturally occurring afterwards (from
t = 5 on) in the SOM is designated to be the dynamic
representation that encodes the input coordinate vector. The
encoding attractors can be potentially qualitatively classified
into three types: fixed point, limit cycle, and “complex”. For
brevity, the representation encoding a coordinate input (x, y)
is denoted as R(x,y), which is an ordered list of spatial
patterns. With a fixed point attractor, the dynamics eventually
reach a state where further updating of the activation levels
results in the same state persisting over time. In this case,
the representation R(x,y) contains only this fixed-point state.
For a limit cycle, the dynamics eventually result in a list
of periodically repeating distinct states. This list of states is
taken to be the representation R(x,y). Dynamics that do not
show apparent regularity in 200 time steps are classified as
being a complex attractor (including chaotic attractors and
potentially very long limit cycles where no state has yet
repeated during the observation window). In this study, we are
more interested in the limit cycle attractors, since they exhibit
oscillatory activities and have been shown to encode binary
inputs representing phonemes and images quite well in our
recent work [1].



Fig. 2. A typical activity limit cycle R(0.1,0.1) encoding input coordinates
(0.1, 0.1). This limit cycle contains 2 alternating states, each of which is a
sparsely coded activation pattern. Each cell represents a node in the SOM.
Dark cells represent activated nodes; light cells are inactive.

III. RESULTS

The results below are obtained using a 40×30 SOM. A total
of 20 independent simulations are performed with different
initial random weights. Before training, the evaluation data set
yields complex attractors and long limit cycles. After training,
small limit cycles are detected for all input vectors in the
evaluation data set. A majority of the limit cycles are of length
2, while in rare cases those of length 4 also occur, resulting in
an average length of 2.016 (SD = 0.024). On average, a limit
cycle occurs at 3.7 time steps (SD = 0.2) after each input
stimulus is removed (t = 5). A typical activity limit cycle
of length 2 representing coordinates (x, y) = (0.1, 0.1), i.e.,
R(0.1,0.1), is depicted in Fig. 2.

Fig. 3 shows the differences between R(0.1,0.1) and
R(0.2,0.2) (R(0.9,0.9)). It can be observed that similar inputs,
(0.1, 0.1) and (0.2, 0.2), yield similar limit cycles, where only
a few nodes at the bottom-left corner have different activations
(Fig. 3a). On the other hand, distant inputs, (0.1, 0.1) and (0.9,
0.9), yield quite different limit cycles (Fig. 3b).

To formally assess the similarity of limit cycles, we define
the distance between two arbitrary limit cycles R and R′ to
be the minimum one-norm distance between their constituent
states:

dist(R,R′) = min
p∈R,q∈R′

‖p− q‖1, (11)

where p, q are any constituent activation states in R,R′,
respectively. This distance reflects the least number of nodes
whose activation must be inverted (i.e., changing 0 to 1 or
vice versa) to cause one limit cycle attractor to be converted
into the other. This metric serves as a “conservative” lower-
bound estimate of how far apart two limit cycles are from
each other. Fig. 4 shows the distances between the limit cycles
corresponding to all points in the evaluation data set and the
limit cycles corresponding to the two selected points, (0.1, 0.1)
and (0.5, 0.9). In both cases, the distances between limit cycles
correspond quite well with the distances in the input locations.
A gradient, although not perfect, is formed such that as input
moves away from the selected points, the corresponding limit
cycle gradually becomes more different (indicated by gradually
lighter shades of the cell).

Fig. 3. Comparisons of limit cycles (a) R(0.2,0.2), which is the representation
of an external location close to (0.1, 0.1), and (b) R(0.9,0.9), which is for an
external location far from (0.1, 0.1), with R(0.1,0.1) (the latter was shown in
Fig. 2). Only the differences of corresponding activation patterns are shown.
Filled squares represent nodes that are activated in R(0.2,0.2) (R(0.9,0.9))
but not in R(0.1,0.1); hollow squares represent nodes that are activated in
R(0.1,0.1) but not in R(0.2,0.2) (R(0.9,0.9)). The two states in R(0.2,0.2)
and R(0.9,0.9) are aligned with those in R(0.1,0.1) such that the differences
are minimized.

Fig. 4. The distances between the limit cycle for each point in the evaluation
data set and the limit cycle for (a) the point (0.1, 0.1) and (b) the point (0.5,
0.9). Each cell represents a point in the evaluation data set. Lighter colors
represent greater distances away from the selected points, (0.1, 0.1) or (0.5,
0.9). The two points, (0.1, 0.1) in (a) and (0.5, 0.9) in (b), are highlighted
using white circles.

To further verify this phenomenon, we calculated the
distance correlations [31], that is, the correlations between (1)
the distance between any pair of input coordinates, measured
using Euclidean distance, and (2) the distance between their
corresponding limit cycles. Additionally, the average distance
between any pair of limit cycles is also calculated. The
average distance reflects the uniqueness of each limit cycle
representation. A generally desirable property for encoding a
set of items is the resulting representations being as unique as
possible. The more unique a representation is, the less likely



TABLE II. DISTANCE CORRELATION AND AVERAGE DISTANCE OF
LIMIT CYCLES BEFORE AND AFTER TRAINING

Distance correlation Average Distance
Before training 0.47 (SD = 0.02) 64.75 (SD = 3.87)

After training 0.89 (SD = 0.01) 156.29 (SD = 1.55)

Fig. 5. Map formation (a, c) before and (b, d) after training. (a) and (b) show
the weight values corresponding to the x component of input coordinates; (c)
and (d) shows the weight values corresponding to the y component. Each
cell corresponds to a node in the SOM. Brighter cells indicate higher weight
values.

its corresponding item is to be confused with other items in
subsequent processing, such as in a classification task. The
distance metric in Eq. 11 is used here.

Table II summarizes the results concerning distance cor-
relation and average distance between the limit cycles. After
training, both metrics are significantly increased. For distance
correlation, the value obtained after training indicates that dis-
tances in the input space are highly correlated with distances in
the limit cycle state space (a value of 1 indicates two variables
being almost surely dependent, while 0 indicates statistical
independence). In other words, there is a strong tendency that
similar inputs will result in similar limit cycles, and distinct
inputs will results in distinct limit cycles. At the same time,
the distance between any pair of limit cycles increases after
training. This indicates that each limit cycle becomes more
unique. These two properties together demonstrate that the
limit cycles encode coordinate inputs quite well.

Finally, the weight values are visualized in Fig. 5. Map
formation is obviously observed after training (right column),
where a gradient is formed between clusters of bright cells
(high weight values) and dark cells (low weight values). The
existence of multiple bright (dark) clusters is caused by multi-
winners-take-all activation, similar to the observations in [1].

IV. DISCUSSION

In our recent work [1], we established conditions for multi-
winner SOMs to represent varied-length temporal sequences
of binary stimuli (phoneme sequences of words and images
of the objects they describe) using small limit cycles of
variable lengths, through on-going activation and adaptation.
These limit cycles were shown to be unique and resistant to
perturbations, and can be associated with one another, such that
one limit cycle in a SOM is able to trigger another limit cycle
in another SOM while exact operation timing is not critical.

In this study, we have shown that small limit cycles
emerged in response to 2D coordinate inputs. We believe that
these limit cycles are well suited to serve as representations
for the corresponding 2D locations, because they are found to
be quite unique and simultaneously highly correlated with the
input locations, in a way that similar inputs result in similar
limit cycles and different inputs result in different limit cycles.
This property was not obvious in our past work and is reported
for the first time here. Further, despite using post-stimulus
dynamics and limit cycle representations, the SOM still forms
a smooth map — the weight changes between neighboring
nodes become smoother after training and clustering occurs.

Compared with our recent work [1], this study uses real-
valued coordinate inputs rather than binary inputs. Addition-
ally, the training and evaluation data sets are separate in
this study. The training data set is sampled randomly in the
input space, while the evaluation data set consists of specific
positions that form a grid in the input space. Under these
new conditions, small limit cycles still emerged as a result of
unsupervised learning, which are comparable to those reported
previously. The results in this study suggest that real-valued
inputs with randomized training data are likely to enhance
the correlations between inputs and limit cycles, as compared
with [1]. Another difference is that, in this study, the post-
stimulus adaptation time required to obtain small limit cycles
(5 time steps) is shorter than in our previous work (≥ 15
times steps). The lengths of the resulting limit cycles are also
less varied in this study (mostly 2), which may be the result
of presenting fixed inputs for fixed durations, as opposed to
varied-length temporal sequences in [1].

In conclusion, our initial studies show that limit cycles
in SOMs have the potential to work in biologically-plausible
neurocomputational models, and therefore they merit further
investigation. In the future, large-scale statistical experiments
and larger neural architectures with SOMs need to be explored
to better support using this type of neurodynamics.
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