
A Self-Organizing Map Architecture for Arm Reaching
Based on Limit Cycle Attractors

Di-Wei Huang
Dept. of Computer Science

dwh@cs.umd.edu

Rodolphe J. Gentili
Dept. of Kinesiology,

NACS
rodolphe@umd.edu

James A. Reggia
Dept. of Computer Science,

UMIACS
reggia@cs.umd.edu

University of Maryland, College Park, MD 20742, United States

ABSTRACT
Creating and studying neurocognitive architectures is an ac-
tive and increasing focus of research efforts. Based on our
recent research that uses neural activity limit cycles in self-
organizing maps (SOMs) to represent external stimuli, this
study explores the use of such limit cycle attractors in a neu-
rocognitive architecture for an open-loop arm reaching task.
The goal is to learn to produce a static motor command for
arm joints that moves the manipulator to a target spatial lo-
cation, while the internal neural activity remains oscillatory.
Unlike with static SOMs, stabilizing output based on chang-
ing neural activity becomes an important issue. Our archi-
tecture is also characterized by simple and forgiving timing
requirements, meaning that the time of gating among neu-
ral components can be set relatively arbitrarily due to the
repetitiveness of limit cycle activity. The results indicate
that our architecture generalizes to unseen data, and that
the overall performance is insensitive to exact gate timing.

Categories and Subject Descriptors
I.2.0 [Artificial Intelligence]: General—cognitive simu-
lation; I.2.6 [Artificial Intelligence]: Learning—connec-
tionism and neural nets; I.2.9 [Artificial Intelligence]:
Robotics—kinematics and dynamics

Keywords
Self-organizing maps, Limit cycle attractors, Multi-SOM ar-
chitecture, Neural oscillation, Open-loop motor control, Arm
movements

1. INTRODUCTION
Interest in building artificially intelligent agents based on

neurocognitive architectures has been accelerating during re-
cent years. Often such systems try to implement cognitive
functions by creating neuro-anatomically grounded simula-
tions of multiple cortical regions using brain-inspired neu-
ral networks, among which self-organizing maps (SOMs) are

.

known to be a promising model for cortical regions [19, 21,
8].

A SOM is a two-layer neural network inspired by cortical
maps found in biological neural systems [11, 22]. It learns
to map high-dimensional inputs onto its output nodes that
form a low-dimensional (usually 2D) lattice. This map-
ping is non-linear and topology-preserving, meaning that
nearby output nodes in a trained map are typically sensi-
tive to similar input patterns, although sudden jumps may
also occur. Due to this property, SOMs can effectively clus-
ter and visualize complex data, and have gained much at-
tention across several disciplines [11]. At the same time,
SOMs have successfully captured many biological phenom-
ena observed in cortical regions, including the topographical
self-organization of somatosensory, visual, and auditory cor-
tices [16, 20], the alignment of multiple feature maps [4],
the formation of mirror-symmetric maps [21], and related
cognitive phenomena [2].

To date SOMs have only played a limited role in large-
scale neurocognitive architectures. A fundamental barrier to
adopting SOMs in neurocognitive architectures is that most
past SOMs have used a static representation of information,
meaning that each input is encoded by a single fixed activity
pattern in a SOM. Moreover, each activity pattern typically
contains only a single maximally activated node (i.e., a“win-
ning” node), which is similar to a one-hot encoding scheme.
Our previous work addresses this issue by proposing SOMs
based on a limit cycle representation [8, 9]. That is, in-
stead of a fixed single-winner activity pattern, each input
is encoded by a temporal sequence of multi-winner activity
patterns that forms a limit cycle attractor. The limit cycles
are learned through self-organization rather than manually
specified. We have recently shown that such a representation
can be used to encode both static vectors [8] and temporal
sequences [9]. A major distinction of our approach is that
it takes into account the ongoing temporal transformation
of a SOM’s activity, rather than only a specific activity pat-
tern occurring at a certain time. An immediate benefit of
using limit cycles is increased robustness of a SOM’s rep-
resentation, since attractors by definition can recover from
reasonable amounts of perturbation. Additionally, limit cy-
cle attractors can persist indefinitely in a SOM after their
corresponding inputs are removed, allowing a less restric-
tive time period for a downstream component to access the
SOM’s activity. As a comparison, a static representation in
a conventional SOM typically exists only as long as a cor-
responding input is presented, unless the SOM’s activity is
artificially frozen. Finally, using limit cycles captures the

oscillatory and rhythmic nature of cortical activity, which is
clearly a prominent feature of biological neural systems [3,
17]. There is also substantial evidence that cognitive func-
tions such as memory are strongly related to ongoing rhyth-
mic oscillations of neural activity [6].

However, given that a SOM can encode inputs using limit
cycles, it is still unknown if such attractor activity can be
harnessed to drive a neurocognitive architecture containing
multiple SOMs. Although our previous work has provided
some positive preliminary results, it is limited in that the
architecture has not been used to generate outputs and the
data size is limited (50 pairs of phoneme sequences and im-
ages) [9]. More importantly, the ability to generalize to new
and unseen data, a critical indicator of a successful neu-
rocognitive architecture, is not clear. In this study, we aim
to address these issues in the context of an arm reaching
task.

Arm reaching, an inverse kinematics problem, is a control
task where the manipulator (hand, gripper, etc.) of an arm
is to be driven to a target location. This problem is known to
be ill-posed and non-linear, and is being studied intensively
in robotics and neurosciences. The arm in this context is
characterized by multiple rigid segments connected by ro-
tatable joints, which, when rotated, will change the location
of the free end of the arm (i.e., the manipulator). Thus the
goal of the problem is to find a vector in the joint angle
space (i.e., a set of rotation angles for all joints) that brings
the manipulator of the arm to the target spatial coordinates
in Cartesian space. Traditional non-oscillatory SOMs has
been widely used in solving this problem [1]. In [18, 13], a
SOM is trained using samples in both the joint angle space
and the Cartesian space. Later when the SOM is given only
Cartesian inputs, the weights for joint angles in each node
serve as an associative memory for patter completion that
yields joint angle outputs. Similar strategies can be found
in [23, 5], but discrete SOM nodes are smoothed out as a
continuous manifold by interpolation. In [14, 12], each SOM
node stores extra information (e.g., a matrix) for perform-
ing locally linear transformation from the Cartesian space to
the joint angle space. In architectures that contain multiple
SOMs, it is typical that inputs in each modality are pro-
cessed separately by a SOM first. These unimodal SOMs
are then associated directly or through other SOMs. In [10],
inputs from the joint angle space and the Cartesian space
are processed separately by two unimodal SOMs, and then
the association between winning nodes in the two SOMs are
learned using Hebb’s rule. In [13], a separate multimodal
SOM is used for associating unimodal SOMs, although win-
ning node indexes rather than activity patterns are used as
inputs to the multimodal SOM. A more realistic multi-SOM
architecture can be found in [15], which is characterized by
iterative competition among nodes and topographic connec-
tions between SOMs.

Our goal is thus to build a SOM-based architecture for
arm reaching that, unlike the past work summarized above,
operates on limit cycle activity. In this study, we focus on
an open-loop version of the problem, or coarse arm reach-
ing, meaning that the manipulator location during a reach-
ing movement is not provided as feedback to the architec-
ture. This task is analogous to reaching for something with
one’s eyes closed. To our knowledge, this is the first attempt
to build a neurocognitive architecture that generates fixed
outputs based on oscillatory neural activity. Our focus is on

Figure 1: An overview of our architecture. The ar-
chitecture contains two SOMs, the spatial map and
the joint position map, which are connected through
a hidden layer. The temporal average filter com-
putes average of the activity in the joint position
map, and is connected to the output layer through
a hidden layer. An arm model is also created for
converting joint positions to spatial locations.

learning associations between SOMs that generalize, mean-
ing: The architecture needs to be able to invoke a proper
oscillatory activity sequence, and eventually a proper out-
put, for a new input never seen during training. Learning
such associations for limit cycle activity is a much more chal-
lenging task than with static single-winner activity, because
each limit cycle contains multiple activity patterns and each
activity pattern contains multiple winning nodes. Another
equally important objective is to make timing control sim-
ple and forgiving, because an architecture based on dynamic
neural activity can be much less robust if its operation relies
on highly specific timing. Specifically, each component’s ac-
tivity needs to be readable by a downstream component at a
relatively arbitrary time without overall performance being
substantially compromised. Further, the operation timing
also needs to be independent of the exact timing of individ-
ual limit cycles (i.e., the start time and the length), so that
the architecture does not need to explicitly detect onset of
limit cycles.

2. METHODS
An overview of the neurocognitive architecture is shown

in Fig. 1. This architecture contains two SOMs, the spa-
tial map and the joint position map, each taking input from
spatial coordinates of the manipulator and joint propriocep-
tion of the arm, respectively. Connections between the two
maps are used to associate the two corresponding modalities.
The joint position map also drives joint command output,
through temporal averaging of its activity. Finally, an arm
model, which is not a part of the architecture, is used to
convert joint positions to manipulator coordinates. The fol-
lowing sections describe the activation and training of these
components.

2.1 Arm Model
The arm being used here is modeled after that of Baxter

robot by Rethink Robotics. To manage the complexity of
the problem, four of the seven joints are fixed at 0, while two

Figure 2: Schematic diagram of the arm model.

shoulder and one elbow joints are freely adjustable, form-
ing a 3-DOF arm operating in a 3D cartesian space. Fig-
ure 2 shows the schematic of the arm model. When given
a set of joint angles (θ1, θ2, θ3) the arm model determines
the spatial location (x, y, z) of the manipulator using the
Denavit-Hartenberg method [7, p.435]. The value range of
each dimension in both (x, y, z) and (θ1, θ2, θ3) is normalized
to fit in the range between 0 and 1, before being fed into the
architecture.

2.2 Neural Architecture
The spatial map and the joint position map are SOMs sim-

ilar to those used in [8], each having two sets of incoming
connections, afferent connections and recurrent connections.
The afferent connections connect their respective afferent in-
put, i.e., (x, y, z) and (θ1, θ2, θ3), while recurrent connections
exist between neighboring map nodes that are within a box
distance of 2. The input coming from the recurrent connec-
tions has a unit time step delay. The associative connections
from the spatial map to the joint position map (top of Fig. 1)
give the latter an additional set of incoming connections.
The relative strengths for inputs coming from different sets
of connections are expressed as adjustable gating parame-
ters. The net inputs for each node i in the two maps at time
t, given afferent inputs x = (x, y, z) and θ = (θ1, θ2, θ3), is
defined by:

hSi (t) =− αS1 (t)
∥∥∥x−wS

i

∥∥∥2 + αS2 (t)aS(t− 1) · uSi , (1)

hJi (t) =− αJ1 (t)
∥∥∥θ −wJ

i

∥∥∥2 + αJ2 (t)aJ(t− 1) · uJi

+ αJ3 (t)fassoc(aS(t)), (2)

where superscripts S and J correspond to the spatial and
the joint position maps, respectively. Each a(t) is the ac-
tivity pattern of a SOM at time t, and fassoc represents the
fully-connected, two-layer feedforward net between the two
maps. Parameters α are relative strengths that gate inputs
from different sources, and can be different at different t.
Trainable parameters w’s and u’s denote the afferent and
recurrent connection weights, respectively. Given h’s, the
activity output of the maps at time t can be determined

using multi-winners-take-all:

ai(t) = min

1,
∑

k∈(i∪Ni)∩W(t)

γd(i,k)

 , (3)

Ni = {k | k 6= i and d(i, k) ≤ 2} , (4)

W(t) = {k | hk(t) > hl(t), ∀l ∈ Nk} , (5)

d(i, k) = max(|row i − rowk|, |columni − columnk|), (6)

where 0 ≤ γ < 1 is a parameter controlling the degree of
activation for nodes surrounding a winning node. Ni de-
fines the competition neighborhood around node i to be of
radius 2 (incidentally, but not required to be, identical to
the radius of recurrent connections), where the distance d
between nodes in a SOM is calculated using box distance.
W(t) denotes the set of winning nodes. Eq. 3 states that the
activation level of each node is determined by how close the
node is to all winner nodes in the local neighborhood, upper-
bounded by 1. Winner nodes are always fully activated (take
on value 1), since d(i, k) in Eq. 3 is 0. Notice that since each
activity pattern a(t) depends on the last activity pattern
a(t − 1), the activity pattern of a map changes with time
and forms a dynamical system. Specifically, we have found
that limit cycles are a prominent class of attractors that are
learned via self-organization [8, 9].

In order to generate steady joint command output, the
oscillatory activity in the joint position map needs to be
“smoothed out”. For this purpose, a temporal average filter
is added downstream of the joint position map. The filter
contains the same number of nodes as the joint position map,
and each node connects one-to-one to the nodes in the map.
The activity of each node in the filter is a temporally moving
average of the corresponding map node’s activity in the last
TF (a parameter) time steps, which can be expressed as:

aFi (t) = αA(t) · 1

TF

TF−1∑
t′=0

aJi (t− t′), (7)

where αA(t) is the output gate. Finally the joint command
output

θout(t) = fout(a
F (t)) (8)

is generated, where fout , like fassoc above, represents the
fully-connected, two-layer feedforward net between the tem-
poral average filter and the output nodes.

2.3 Training
Training of the architecture is divided into three stages.

The two maps are first trained separately. Then the the ar-
chitecture learns to generate joint command output based
on joint proprioception. Finally the inter-modality associ-
ation is learned between the spatial and the joint position
maps.

2.3.1 Stage 1: Individual map training
In this first stage, the two maps are trained separately to

obtain limit cycle representations for their respective affer-
ent inputs. The training data for joint proprioception inputs
are generated randomly, and are run through the arm model
to obtain data for spatial coordinates input. This is analo-
gous to motor babbling in development stages of biological
neural systems. Each data sample is presented to a map for
2 time steps from t = 0, after which the map continues to

run and adapt for another 4 time steps. The latter is referred
to as the continuation time. This is done by specifying the
gating parameters:

α1(t) =

{
0.64 if 0 ≤ t ≤ 1

0 otherwise
; α2(t) =

{
0.36 if 0 ≤ t ≤ 3

0 otherwise
;

αJ3 (t) = 0, ∀t. (9)

At each time step, the weights are updated as:

wi(t+ 1) = wi(t) + µ1ai(t)(I −wi(t)), (10)

ûik(t+ 1) = uik(t) + µ2ak(t− 1) max(0, ai(t)− ai(t− 1)),
(11)

uik(t+ 1) = ûik(t+ 1)/
∑
l

ûil(t+ 1), (12)

where µ1 and µ2 are learning rates, and I denotes the affer-
ent input, either x (spatial map) or θ (joint position map).
Eq. 10 specifies a typical unsupervised SOM learning rule,
while Eqs. 11 and 12 perform temporally asymmetric Heb-
bian learning [19]. The learning rates µ1 and µ2, as well as
the activation parameter γ in Eq. 3, are decreased nonlin-
early throughout the training process. Readers are referred
to [9] for more details. Upon completion of this stage, limit
cycle representation is expected to occur in both maps when
the maps are allowed to run for a longer period of time, e.g.,
by setting α2(t) = 0.36 for 0 ≤ t ≤ 500 in Eq. 9.

To test how an input is encoded by a limit cycle after
training, spatial coordinates (x, y, z) are presented to the
spatial map at t = 0 and 1. The activation parameter γ
is fixed at 0 after training, meaning each non-winner has
an activation value of 0 (inactive) while each winner has
1 (maximally activated). After the input is removed, the
activity of the map goes through a brief period of irregular
dynamics and eventually settles into a limit cycle attractor,
a cyclically repeating sequence of activity patterns. This
limit cycle is used as a representation of the corresponding
afferent input, which, in this case, is spatial coordinates. As
indicated in [8], similar inputs result in similar limit cycles.
Fig. 3 shows a sample limit cycle of length 2, where each
activation pattern is sparsely-coded.

2.3.2 Stage 2: Joint command output
In this stage, the architecture learns to generate joint com-

mand outputs that match given joint proprioceptive inputs.
Specifically, when a joint proprioception pattern θ is pre-
sented to the joint position map, the goal is to eventually
generate θout such that θout ≈ θ. Again, the training sam-
ples are generated randomly. Each joint position input re-
sults in a limit cycle in the joint position map, whose activity
is then passed to the temporal average filter that generates
average activity for the most recent TF time steps, where
TF is a parameter. The value of TF can be set rather ar-
bitrarily, as long as it covers the lengths of most limit cy-
cles. At a pre-specified output time tout , the output gate of
the temporal average filter is opened (αF (tout) = 1, Eq. 7),
passing its activity through the two-layer feedforward net,
represented by fout , to generate an output joint command,
θout = fout(a

F (tout)). Again, tout can be set rather arbi-
trarily, as long as it is late enough such that the activity
dynamics of the joint position map has entered a limit cy-
cle. This is because activity of a limit cycle is regular, and
thus the results of temporal averages at different times are

Figure 3: A sample limit cycle of length 2. Each cell
represents a SOM node. Black cells represent win-
ner nodes. This particular limit cycle first appears
at t = 7, meaning the pattern on the left appears at
t = 7, 9, 11, · · · , while the pattern on the right appears
at t = 8, 10, 12, · · · .

quite similar. Finally, fout is trained using a resilient error-
backpropagation (RPROP) method. Notice that it is pos-
sible for different joint positions to be mapped to the same
limit cycle due to SOM’s discretization effect, and thus a
pattern aF can correspond to multiple θout in training data.
In this case, only the “most relaxed” joint position among
them, i.e., arg minθ‖θ − (.5, .5, .5)‖, is used to train fout .

2.3.3 Stage 3: Inter-modality associations
To establish associations between the spatial map and the

joint position map, and to eventually be able to transform
spatial coordinates to joint commands, limit cycle activity
in the spatial map needs to be correlated to that in the joint
position map through the feedforward network between the
two maps represented by fassoc . More generally, let AS(x)
and AJ(θ) each denotes a sequence of activity patterns in
the spatial and the joint position maps, when given the ma-
nipulator coordinates x and the corresponding joint posi-
tions θ as afferent inputs. The goal of this stage is to train
fassoc such that the activity dynamics in the joint position
map, when driven solely by AS(x) through fassoc (i.e., with-
out afferent input θ), can become similar to AJ(θ). Note
that this is a much harder problem than associating patterns
from two single-winner SOMs with static representations,
because each representation now contains multiple activity
patterns and each activity pattern contains distributed win-
ning nodes.

To generate training data, a number of θ’s is randomly
sampled, which leads to corresponding x’s. Each θ and x are
then presented to their respective maps for 2 times steps, af-
ter which activity of the two maps continues being updated.
Starting from a pre-specified time step tassoc , the sequence
of activity patterns in the next TA (a fixed parameter) time
steps in both maps are stored as ordered lists AS and AJ ,
i.e., A· =

[
a·(tassoc),a·(tassoc + 1), · · · ,a·(tassoc + TA − 1)

]
.

Since the activity of the maps are limit cycles, the exact val-
ues of tassoc and TA are again not critical; they only need to
be reasonably late and long enough to cover at least a large
portion of a limit cycle.∗ As with the previous stage, notice

∗On the other hand, large TA slows down training signifi-

that it is possible for multiple different activity sequences in
the joint position map to correspond to the same activity
sequences in the spatial map, due to discretization of SOMs
and the nature of a redundant manipulator. Again, only
the most relaxed joint position among them is selected as
training data in this case.

To correlate AS and AJ , our approach is to train the
feedforward net between the two maps, fassoc , using error
backpropagation (RPROP). Since AS and AJ contain TA

(a fixed parameter) patterns each, and since each pattern is
a result of multi-winner-takes-all processes, conventional er-
ror backpropagation does not directly apply and thus needs
the following modifications:

1. Error function. The standard error function calculates
the squared distance between a target pattern T and
an output pattern O as E(T ,O) =

∑
i(Ti−Oi)

2. The
target pattern T is a binary vector (∈ {0, 1}) since
γ = 0 (see Eq. 3 and Fig. 3). However, this error func-
tion does not account for the fact that the downstream
component of the net is a SOM, which performs multi-
winners-take-all dynamics for node activation. This is
too restrictive since the error function drives Oi of a
non-winning node i (i.e., Ti = 0) toward 0, while in
fact, all that is needed is that i is not selected as a
winner. To achieve this, Oi only needs to be smaller
than the greatest value in its competition neighbor-
hood, i.e., Oi < maxk∈Ni Ok. This is realized by defin-
ing the following alternative error function:

E(T ,O) =
∑
i

(T ′i −Oi)2,

T ′i =

{
1; if Ti = 1,

ξmaxk∈Ni Ok; if Ti = 0,

(13)

where ξ = 0.7 is a discount parameter whose value is
determined empirically.

2. Alignment. While fassoc takes one map pattern as in-
put and generate one as output at a time, AS and
AJ each contain TA patterns. To train fassoc , pat-
terns in AS and AJ need to be properly aligned to
form TA training samples (i.e., input-target pairs).
There are TA possible cyclic alignment between the
two sequences. Namely, let 0 ≤ δ < TA be an align-
ment parameter such that the k-th pattern in AS is
paired with the (k + δ mod TA)-th pattern in AJ ,
k = 0, 1, · · · , TA. Here we choose the alignment δ∗

that minimizes the sum of errors for all pattern pairs.
That is,

δ∗ = arg min
δ

TA−1∑
k=0

E(AJ(k+δ mod TA), fassoc(ASk)),

(14)
where the error function E is defined in Eq. 13. The
value of δ∗ is updated for each epoch of training, and
the resulting input-target pairs, 〈ASk , AJ(k+δ∗ mod TA)〉,
are used to adapt weights of fassoc . We hypothesize
that, by using such δ∗ that minimizes the sum of er-
rors, weight adaptation of fassoc will eventually con-
verge and generalize reasonably well.

cantly. Therefore, we set TA = 10 empirically.

Figure 4: A summary of gate timing. The horizon-
tal axis represents time. A rectangular region indi-
cates that the gate is open (connections enabled),
while a horizontal lines indicates that the gate is
closed. Values α·1 and α·2 denote the gates for the
afferent and the recurrent connections of the SOMs,
respectively. Value αJ3 denotes the gate for the in-
coming associative connections of the joint position
map, while αF denotes the gate for the connections
between the temporal average filter and the output
layer.

2.4 Testing
After training, new spatial coordinates xtarg are provided

as input to the architecture, specifying the target location
to be reached by the arm. The output joint command of
the architecture θout is passed through the arm model of
Fig. 2 to obtain resulting manipulator coordinates xout . By
comparing the two spatial locations xtarg and xout , the spa-
tial error D = ‖xtarg − xout‖ indicates the overall accuracy
of the architecture. The target coordinates in testing data
are generated by recording the manipulator locations cor-
responding to a 10-by-10-by-10 grid in the joint position
space, i.e., θ1, θ2, θ3 = {.05, .15, .25, · · · , .95}. These targets
contain some extreme locations that are hard to reach.

The gate timing of the architecture is illustrated in Fig. 4.
The afferent input of the spatial map receives fixed target
coordinates during the first two time steps, while that of the
joint position map remains shut. The latter ensures that the
architecture receives only target spatial coordinates as in-
put. The recurrent connections for both maps remain open.
From t = 2, the activity of the spatial map starts to settle
in a limit cycle attractor. The associative connections be-
tween the two maps, initially closed, are opened at a fixed
time t = tassoc , at which point on the changing activity of
the spatial map starts to drive the activity of the joint posi-
tion map, which is initially silent. In addition to the input
from the spatial map, the activity of the joint position map
is also affected by itself through its own recurrent connec-
tions. Finally, at a fixed time t = tout , the output of the
temporal average filter, which maintains an average of the
most recent TF activity patterns in the joint position map,
is open, and then a joint command is generated. Note that,
as with training, the values of tassoc , tout , and TF can be set
rather arbitrarily, only that they are sufficiently late such
that the activity of the maps has entered a limit cycle at-
tractor. More importantly, they do not depend on the exact
timing of individual limit cycles (i.e., the exact start time
and the length), and thus the boundaries of limit cycles do
not need to be detected by the architecture.

Figure 5: Map formation. Each subgraph plots a
weight component of a map, namely θ1, θ2, and θ3
of the joint position map (top row) and x, y, and z
of the spatial map (bottom row). Each cell in each
subgraph corresponds to a node in a map. Lighter
shade indicate a higher value, while a darker shade
indicate a lower value.

3. RESULTS
The results reported below are obtained using an archi-

tecture with 40 × 30 nodes in each map, and 200 nodes in
each hidden layer. A total of 10 independent simulations are
performed with different initial random weights. The aver-
age results are reported below. Unless otherwise noted, the
timing parameters are: tassoc = 50, tout = 130, and TF = 30.

3.1 Map and limit cycle formation
The two maps are separately trained during the first stage

of training. Fig. 5 shows the individual afferent weights
of both maps after training. The initially random weights
become self-organized into quasi-repetitive patterns of high
and low value clusters, forming dark and light interleaved
stripes. Although this result is certainly less smooth than
conventional SOMs, because multi-winner activation is used
and the maps are trained for limit cycles, its appearances
are qualitatively similar to some cortical maps in biological
neural systems.

Fig. 6 summarizes the lengths of the limit cycles formed in
each map. On average, about 60% of the testing data results
in a limit cycle of length 2 in each map, although there is
high variation among different simulations, as indicated by
the error bars (standard deviations). Other common lengths
include 4, 6, 10, and 12. The lengths of limit cycles tend to
be multiples of 2, 3, and 5, where smaller factors appear
more frequently. Note that the architecture does not need
to detect the lengths of limit cycles. They are shown here
for illustration purposes only.

3.2 Convergence of pattern alignment
During the third stage of training (Sect. 2.3.3), when the

inter-modality associative connections are being trained, an
alignment parameter δ∗ is used to align the input and output
activity sequences. Since the value of δ∗ is updated every

2 4 6 8 10 12 20 30 60
0

20

40

60

80

100

Pe
rc

en
ta

ge
of

th
e

te
st

in
g

da
ta

Spatial map

2 4 6 8 10 12 24

Joint position map

Limit cycle lengths

Figure 6: Lengths of limit cycles formed in both
maps for the testing data.

0 10 20 30 40 50 60 70

Epoch

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
of

th
e

tra
in

in
g

da
ta

w
ho

se
al

ig
nm

en
tc

ha
ng

es
si

nc
e

la
st

ep
oc

h

Figure 7: Convergence of limit cycle alignments in
the course of training.

training epoch (Eq. 14), if its value keeps changing every
epoch, the same input pattern will correspond to a differ-
ent target pattern when adapting the weights, potentially
causing the training process to diverge. To investigate this
issue, the changes of alignment in a typical simulation are
plotted in Fig. 7. In the first 7 epochs, alignment changes
occur with about 20% or higher of the training data, and the
percentage may even rise, e.g., from epoch 3 to 7. Later, the
alignment changes eventually drop to a low percentage and
become stabilized, about 2% at epoch 30 and about 1% at
epoch 40.

Such convergence can be considered as indicating that a
“consensus” alignment has been reached among the training
data, which initially prefer different alignments. By “pre-
ferred” we mean the alignment that results in the least er-
ror (Eq. 14). Suppose that initially each activity sequence
prefers to align differently, there will be an alignment that is
preferred by slightly more sequences than other alignments,
resulting in slightly more overall influences on weight adap-
tation. Then the adapted weights in turn encourage more
sequences in the training data to prefer this alignment, form-
ing a positive feedback process. This process continues until
nearly all sequences prefer the same alignment.

3.3 Spatial error
Fig. 8 shows a comparison of overall spatial errors D, as

measured as Euclidean distances (Sect. 2.4), before versus
after training. Since the testing data set is never used dur-
ing training, the results can be used to evaluate the degree
of generalization. The value of spatial coordinates are nor-
malized such that each of x, y, and z is within [0, 1]. Before

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Spatial error

0

10

20

30

40

50
Pe

rc
en

ta
ge

of
th

e
te

st
in

g
da

ta

Before training
After training

Figure 8: End-to-end spatial error D = ‖xtarg − xout‖
for the testing data before and after training.

training, the spatial errors of the testing data were widely
distributed across the value range, while after training, they
are clustered at low values. Errors less than 0.1 account for
about 70% of the testing data. Numerically, the average
spatial error before training is 0.5578 (SD=0.0522), while
after training the value becomes 0.084 (SD=0.0031) quite
consistently. The post-training error is about 15% of the
pre-training error and 1/12 of the length of each axis. The
architecture clearly generalizes to the testing data.

3.4 Sensitivity of timing
Three timing parameters have been introduced in the test-

ing process (Sect. 2.4), namely tassoc , the time from which
the associative connections between the spatial map and the
joint position map becomes active, tout , the time at which
a joint command output is generated, and TF , the number
of time steps on which the temporal average filter operates.
In an architecture based on constantly changing activity, the
overall performance could be very sensitive to operation tim-
ing. This would be undesirable because the system becomes
unstable and requires highly accurate control mechanism.

To examine the sensitivity of timing, the three timing pa-
rameters were varied in a typical simulation. Fig. 9a shows
that the overall performance is insensitive to tassoc after 20
time steps, although there are slight fluctuations. This re-
sult indicates that the choice of tassoc is quite unrestrictive.
The only requirement is that it is late enough such that
the dynamics in the spatial map have entered a limit cycle.
Similarly, Fig. 9b indicates that tout can be chosen quite ar-
bitrarily, only that it is later than tassoc by at least TF = 30
time steps, such that the temporal average filter gathers all
30 patterns from the joint position map. Another important
indicator is that, since the internal representation of the ar-
chitecture is non-fixed point, if the architecture is allowed
to continuously generate outputs, how stable these outputs
are. Fig. 9c shows the changes of manipulator locations at
each time step compared with the previous time step. The
fluctuations are quite small, less than 2× 10−4 of the length
of each axis. Finally, Fig. 9d shows the effects of TF on
the spatial error. Small TF results in generally worse per-
formance, although even TF values tend to perform better
than odd ones. This is because the lengths of the limit cy-
cles tend to be multiples of 2. As TF increases, this effect
diminishes and the value of TF becomes insensitive to even
or odd numbers. Therefore, like the other two timing pa-

0 10 20 30 40 50 60 70
tassoc

7.7
7.8
7.9
8.0
8.1
8.2
8.3
8.4
8.5

A
ve

ra
ge

sp
at

ia
le

rr
or

(1
0−

2
) (a)

0 10 20 30 40 50 60 70 80
tout − tassoc

7.6
7.8
8.0
8.2
8.4
8.6
8.8
9.0
9.2

A
ve

ra
ge

sp
at

ia
le

rr
or

(1
0−

2
) (b)

131 132 133 134 135 136 137 138 139
tout

1.0

1.2

1.4

1.6

1.8

2.0

A
ve

ra
ge

sp
at

ia
lc

ha
ng

e
si

nc
e

la
st

tim
e

st
ep

(1
0−

4
) (c)

2 4 6 8 10 12 14 16 18 20
T F

7.6

7.8

8.0

8.2

8.4

8.6

8.8

9.0

A
ve

ra
ge

sp
at

ia
le

rr
or

(1
0−

2
) (d)

Figure 9: Effects of timing parameters. The baseline
values are: tassoc = 50, tout = 130, and TF = 30. (a–
b) and (d) show the effects of tassoc, tout − tassoc, and
TF on the spatial error, respectively. (c) shows how
much the manipulator moves in each output time
step, indicating how stable the output is.

rameters, the choice of TF can be rather arbitrary, as long
as it is large enough.

4. DISCUSSION AND CONCLUSIONS
Although SOMs have been used widely for clustering and

visualization purposes as standalone devices, they are cer-
tainly not prevalent in designs for large-scale neurocognitive
architectures, something that is surprising given the increas-
ing interest in “mapping the brain”. In those architectures
which do use SOMs, they are often limited by single-winner
activation and static representations. In this paper, we have
introduced a neurocognitive architecture for open-loop arm
reaching based on SOMs using limit cycle activity, which
captures cortex-like activity profiles in the sense that they
involve sparsely-coded multi-peak activation and rhythmi-
cally oscillating dynamics. This type of activity, however,
is much harder to harness, especially for tasks that require
fixed-point outputs such as arm reaching and fixed position
maintenance. We have provided a 3-stage training method
where each stage trains a different part of the architecture.
First, sensory maps for the spatial and the joint position
modalities are formed using unsupervised learning. Then
the activity of the joint position map is associated with
proper motor outputs. Finally, the inter-modality associ-
ation is established for relating limit cycles in the two maps.

A potential issue of using limit cycle activity represen-
tations is generalization, i.e., whether the architecture can
invoke proper limit cycle activity, and thus generate a proper
output, when seeing a new input it never saw during learn-
ing. To make it worse, there are 5 layers of nodes in the
output generation path of the architecture, which results in
many degrees of freedom. The simulation results indicate
that our architecture does generalize reasonably well. It
does so by self-organizing limit cycle representations in in-
dividual maps, by self-organizing alignments between limit
cycles in the two maps during training, and by temporally

averaging limit cycles when generating constant persisting
motor outputs. One possible source of error is the discretiza-
tion error of a SOM. Although the representational capac-
ity of multi-winner limit cycle activity is much greater than
single-winner activity, there are still different inputs being
grouped into the same limit cycle. Other possible sources of
error come from generalization error of the associative con-
nections between the two maps and between the temporal
average filter and the output layer. To further reduce the
error, spatial error feedback must be accounted for by the
architecture, forming a closed-loop system.

While timing control may not be an important issue for
fixed-point neural architectures, it becomes much more rel-
evant in architectures based on dynamic activity patterns,
since the activity patterns are constantly changing. In the
latter case, if operation of the architecture relies on highly
specific timing, not only does it require a highly accurate
control mechanism that usually incurs a large overhead, but
the system also becomes less robust, because missing a spe-
cific activity pattern can potentially cause the system to fail.
In our architecture, timing control is relatively simple and
forgiving, and the simulation results indicate that the over-
all performance is insensitive to timing. Specifically, time
coordination between neural components, such as the times
to enable connections, can be determined quite arbitrarily.
The only restriction is that they need to be sufficiently late,
after the attractor dynamics in a map are stabilized. Also,
the timing parameters, both during and after training, do
not depend on the lengths of limit cycles. In fact, they re-
main fixed for limit cycles of different lengths, and therefore
it is not necessary for the architecture to detect or adjust
timing for individual limit cycles.

Acknowledgement
This work was supported by ONR award N000141310597.

5. REFERENCES
[1] G. A. Barreto, A. F. R. Araújo, and S. C. Kremer. A

taxonomy for spatiotemporal connectionist networks
revisited: The unsupervised case. Neural
Computation, 15(6):1255–1320, 2003.

[2] J. A. Bednar and R. Miikkulainen. Tilt aftereffects in
a self-organizing model of the primary visual cortex.
Neural Computation, 12(7):1721–1740, 2000.

[3] G. Buzsaki. Rhythms of the Brain. Oxford University
Press, 2006.

[4] Y. Chen and J. A. Reggia. Alignment of coexisting
cortical maps in a motor control model. Neural
Computation, 8(4):731–755, 1996.

[5] V. de Angulo and C. Torras. Learning inverse
kinematics: Reduced sampling through decomposition
into virtual robots. IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics,
38(6):1571–1577, 2008.

[6] J. Fell and N. Axmacher. The role of phase
synchronization in memory processes. Nat Rev
Neurosci, 12(2):105–118, 2011.

[7] R. S. Hartenberg and J. Denavit. Kinematic synthesis
of linkages. McGraw-Hill series in mechanical
engineering. McGraw-Hill, New York, 1965.

[8] D.-W. Huang, R. Gentili, and J. Reggia. Limit cycle
representation of spatial locations using self-organizing

maps. In IEEE Symposium on Computational
Intelligence, Cognitive Algorithms, Mind, and Brain
(CCMB’14), pages 79–84, 2014.

[9] D.-W. Huang, R. J. Gentili, and J. A. Reggia.
Self-organizing maps based on limit cycle attractors.
Neural Networks, 63:208–222, 2015.

[10] I. Kajic, G. Schillaci, S. Bodiroza, and V. V. Hafner.
A biologically inspired model for coding sensorimotor
experience leading to the development of pointing
behaviour in a humanoid robot. In Proceedings of the
Workshop HRI: a bridge between Robotics and
Neuroscience. 9th ACM/IEEE Int. Conf. on
Human-Robot Interaction (HRI’14), 2014.

[11] T. Kohonen. Essentials of the self-organizing map.
Neural Networks, 37:52–65, 2013.

[12] P. P. Kumar and L. Behera. Visual servoing of
redundant manipulator with Jacobian matrix
estimation using self-organizing map. Robotics and
Autonomous Systems, 58(8):978–990, 2010.

[13] S. Lallee and P. F. Dominey. Multi-modal convergence
maps: From body schema and self-representation to
mental imagery. Adaptive Behavior - Animals,
Animats, Software Agents, Robots, Adaptive Systems,
21(4):274–285, 2013.

[14] T. Martinetz, H. Ritter, and K. Schulten.
Three-dimensional neural net for learning visuomotor
coordination of a robot arm. IEEE Transactions on
Neural Networks, 1(1):131–136, 1990.

[15] O. Ménard and H. Frezza-Buet. Model of multi-modal
cortical processing: Coherent learning in
self-organizing modules. Neural Networks,
18(5-6):646–655, 2005.

[16] R. Miikkulainen, J. A. Bednar, Y. Choe, and
J. Sirosh. Computational maps in the visual cortex.
Springer, 2005.

[17] E. Niedermeyer and F. da Silva.
Electroencephalography: Basic Principles, Clinical
Applications, and Related Fields. Lippincott Williams
& Wilkins, 2005.

[18] J. Saxon and A. Mukerjee. Learning the motion map
of a robot arm with neural networks. In International
Joint Conference on Neural Networks, volume 2, pages
777–782, 1990.

[19] R. Schulz and J. A. Reggia. Temporally asymmetric
learning supports sequence processing in multi-winner
self-organizing maps. Neural Computation,
16(3):535–561, 2004.

[20] G. G. Sutton, J. A. Reggia, S. L. Armentrout, and
C. L. D’Autrechy. Cortical map reorganization as a
competitive process. Neural Computation, 6(1):1–13,
1994.

[21] J. Sylvester and J. Reggia. Plasticity-induced
symmetry relationships between adjacent
self-organizing topographic maps. Neural
Computation, 21(12):3429–3443, 2009.

[22] C. von der Malsburg. Self-organization of orientation
sensitive cells in the striate cortex. Kybernetik,
14(2):85–100, 1973.

[23] J. Walter and H. Ritter. Rapid learning with
parametrized self-organizing maps. Neurocomputing,
12(2–3):131–153, 1996.

