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Abstract. In robot programming by demonstration, we hypothesize
that in a class of procedural tasks where the end goal primarily con-
sists of the states of objects that are external to a task performer, one
can significantly reduce complexity of a robot learner by not process-
ing a human demonstrator’s motions at all. In this class of tasks, object
behaviors are far more critical than human behaviors. Based on this vir-
tual demonstrator hypothesis, this paper presents a paradigm where a
human demonstrates an object manipulation task in a simulated world
without any of the human demonstrator’s body parts being sensed by
a robot learner. Based on the object movements alone, the robot learns
to perform the same task in the physical world. These results provide
strong support for the virtual demonstrator hypothesis.

Keywords: programming by demonstration · imitation learning · human-
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1 Introduction

Programming by demonstration [1, 2], or imitation learning, has emerged as a
popular approach for coding behaviors of robots. Essentially, a robot learner is
to observe a human perform a task (i.e., the demonstration), after which the
robot is to autonomously reproduce the human’s behavior to complete the same
task (i.e., imitation). This general approach is widely viewed as an intuitive and
promising alternative to conventional manual programming of robots. However,
the optimal way in which a demonstrator should interact with an observing
robot has not been conclusively determined, and may vary depending on the
task and/or the learning robot. Common criteria for evaluating such interac-
tions include minimizing the barriers for humans to demonstrate, minimizing



the burdens for a robot’s learning algorithms to parse/analyze a demonstra-
tion (since imitation learning in itself is already a very difficult problem), and
maximizing the types of tasks that are able to be demonstrated.

Existing interaction methods in which a robot learner observes a human
demonstration can be classified into two classes. In the first class, the human
demonstrator directly drives or manipulates the states of the robot’s body, during
which the robot stores the state trajectories for learning. The way in which the
human drives the robot can be kinesthetic teaching, where a human physically
pulls a robot’s arms to complete a task [3, 4], or teleoperating, where the robot
is driven by remotely located controls [5, 6]. The robot being driven can also
exist in augmented realities [7] or virtual realities [8]. In the second class of
interfaces, the human demonstrator performs the target task on his/her own
without intervening in creating the states of the robot. The demonstration is
captured by a camera and/or spatial markers that detect human motion, the
results of which are passed to the robot for learning [9, 10]. This method has
been used in conjunction with kinesthetic teaching [11]. However, in many cases
human motions on their own are vague and do not clearly convey the intention
of a demonstration. To remedy this, human motion data are usually furnished
with additional information, such as the states of task-related objects [12–14],
from which the robot can learn the relations between hand motions and object
movements, and speech descriptions about the motions, from which the robot
can learn the intentions of the motions from symbolic annotations [15].

Although many demonstration interfaces in the past have emphasized con-
veying the trajectories of a human’s body parts, learning from human motions
in this way poses a major burden to the learner as it involves either difficult
image processing or requires special equipment for capturing a human’s move-
ment. Complex processing is then needed to identify actions from the recorded
motions, and to infer the effects the actions have on the task-related objects.
Coordinate transformations must also be learned between the demonstrator’s
and learner’s frames of references. Further, since a human’s and a robot’s bod-
ies are usually very different from each other, it is likely that the robot has to
act differently from the human to cause the same effect on an object. In this
case, learning from human motions can be ineffective or extremely difficult. To
address these issues, we are exploring the following alternative scenario:

Virtual demonstrator hypothesis: In many situations, effective imitation
learning of a task can be achieved when the demonstrator is invisible.

In other words, in contrast to past work that deals with humans’ physical demon-
strations, we hypothesize that for many tasks where the goal is external to a
performer’s body, most critical information about a target procedure can be
learned by ignoring the demonstrator and focusing instead primarily on the be-
haviors of the objects that are being manipulated, such as assembling a car or
fixing a computer. By making the demonstrator a virtual presence, one qualita-
tively simplifies the motion tracking and understanding needed during learning
and eliminates the coordinate transformation problems involved. This approach
effectively shifts the problem of programming by demonstration from human



motion understanding (i.e., how to do) to object behavior understanding (i.e.,
what to do). While similar ideas have been considered in a few past studies [12,
13], they have either used an over-simplified environment (2D simulated world)
or required special equipment. While we do not definitively prove the virtual
demonstrator hypothesis in the current paper, we do provide a basic proof-of-
concept that this hypothesis is valid in at least some situations and provide
strong support for the hypothesis.

In the following, we describe an object-centric paradigm for programming by
demonstration based on the virtual demonstrator hypothesis, where a demon-
stration is composed of object movements only while the human actions that
cause these movements are not sensed by a robot learner. The work reported
here is mainly about the interaction paradigm, as opposed to describing any
specific cognitive robotics approaches to imitation learning. The latter will be
the subject of a future paper.

2 Methods

Our object-centric programming by demonstration paradigm can be outlined as
the following steps. (1) First, a task space is set up in a software-based simulated
environment. (2) A human then demonstrate a task by manipulating objects in
this environment via “invisible hands”, the process of which is recorded as an
object-only demonstration “video” along with information describing the state
of the objects. (3) A robot agent processes the object-only video as well as the
accompanying information, and forms a plan to reproduce the demonstration.
The plan can then be rehearsed and refined in the same environment. (4) Finally,
the plan is executed in the real world.

Our initial efforts have focused on a tabletop environment for bimanual object
manipulation tasks, one that is being intensely studied such as in [16]. As a
result, our software platform contains a 3D simulated world where an invisible
demonstrator, a robot, a table, and a variety of task-related objects coexist. An
example view of the simulated world as seen by the human demonstrator is given
in Fig. 1, which contains a 3D environment and overlaid graphical user interface
(GUI) controls (Fig. 1; top-right). The environment can be observed through a
freely navigable perspective (Fig. 1; main window) and/or through the robot’s
perspective (Fig. 1; bottom-right). Real-time rigid body physics simulation is
included based on the Bullet physics library5.

2.1 Task Space Initialization

Task-related objects can be specified by writing XML files in conformance to a
predefined XML schema. Our software platform loads such XML files and gener-
ate objects in the simulated environment accordingly. The XML schema defines
XML elements for generating simple objects including blocks, cylinders, spheres,

5 http://bulletphysics.org



Fig. 1. An example view of the software simulation. The main screen shows a simu-
lated environment containing a tabletop and a variety of objects (block, boxes, lids,
strings, etc.), as they are seen by the human demonstrator. The avatar for a two-armed
programmable robot is also embedded in the environment. The bottom-right corner
shows the environment as it is seen by the robot. The top-right corner shows a sample
GUI window. The user can manipulate the environment, including picking up, moving,
rotating, and releasing objects, as well as changing the viewpoint and creating objects.

and containers (Fig. 2a–c), whose size, location, rotation, mass, color, etc., can
be specified using XML attributes. Multiple simple objects can also be grouped
hierarchically, via XML’s hierarchical ordering, to form composite objects, whose
center of mass can be specified. For example, the hammer shape in Fig. 2d is
composed using three cylinders and a block. Further, more complex objects are
included in the XML schema. A string object is simulated by connected solid
links (Fig. 2e), which, when cut, will fall to the table (Fig. 2f). A container with
a sliding lid can also be created (Fig. 2g). The lidded box can be positioned to
become a container with a trap door (Fig. 2h).

2.2 Demonstration

A human demonstrator, while not embodied in the simulated environment, can
manipulate objects using keyboard and mouse inputs through a GUI system,
and therefore no special hardware is needed. For example, a user can virtually
grasp an object by simply clicking on it, and move it by dragging the mouse cur-
sor. A demonstration containing multiple object manipulations can be recorded
as a video (a sequence of visual images) and optional text descriptions (object
shapes, colors, positions, orientations, etc), which are then used subsequently for
training a robot. Text descriptions enable researchers to opt to work at high-level
reasoning about what happens in the scene instead of pure visual learning. A
demonstration can be edited as it is created, by undoing unwanted actions. Since



Fig. 2. Sample objects generated via XML files. (a)–(c) show simple objects: a block,
a cylinder, and a box container. (d) shows a composite object, a hammer. (e), (f) show
a string that when cut dynamically falls onto the table. (g), (h) show a box container
with a sliding lid.

the demonstrator is not visible in the simulated world, it is therefore not nec-
essary for the robot to capture and understand human motions or to transform
between coordinate systems. Instead, learning can be focused entirely on the
consequences of the demonstrator’s manipulative movements in the task/object
space. That is, from the robot’s perspective, the objects in the environment
appear to move on their own.

The demonstrator conceptually has two manipulators, or “hands”, which can
independently manipulate two objects. Each hand can manipulate an object by
grasp, move, rotate, and release operations. A manipulation starts by grasping
an object, from which point on the object is temporarily unaffected by gravity,
i.e., it is held by an invisible hand. A user does so by simply clicking on an
object to be moved. The object can then undergo a series of movements and/or
rotations. The user can move the object by dragging it. In Fig. 3, the block
on the right side is grasped and lifted above the tabletop. To guide the user
through moving an object in 3D space using 2D mouse inputs, a rotatable re-
stricting plane and a virtual shadow is added to the demonstrator’s perspective
(Fig. 3a–b). The object can also be rotated in the three primary axes using
GUI controls (Fig. 3c–d). Finally, when the object has been moved/rotated to
a desired destination/orientation, it can then be released by clicking the release
button. The object resumes being affected by gravity after it is released. The
demonstrator can switch between the two hands while manipulating objects. To
manipulate two objects in parallel, the demonstrator needs to manually inter-
leave the manipulative actions of the two hands. In the case where the user made
an unwanted action, an undo function is provided to restore the previous world
state and discard the corresponding segment in the recorded video.



Fig. 3. The demonstration interface. The red block (right) is currently grasped by the
demonstrator and raised above the tabletop. (a) A restricting plane perpendicular to
the tabletop that guides movement of the grasped object in the 3D world. The plane
can be rotated around the vertical axis to select different moving paths. (b) A virtual
shadow indicating the location of the object. (c) Sliders that control object rotations
around (d) the three primary axes (color coded).

2.3 Robot Agent

A Matlab application programming interface (API) for controlling a simulated
robot is provided. The interface is designed such that a user program serves as
the “brain” of the robot that communicates with the body via sensory inputs
and motor commands. Specifically, the user program is invoked iteratively at
approximately 60Hz (depending on the computing capacity and complexity of
the callback script). In each iteration, the user program is supplied with sen-
sory information in a Matlab variable such as time elapsed since last invocation,
current joint angles, current gripper opening, visual images, and end effector po-
sitions. The user program can then specify motor commands in another Matlab
variable containing joint and gripper velocities. This API resembles a typical
perception-action cycle that is adopted by many bio-inspired intelligent agents.

The robot currently built into this system is modeled after Baxterr, a com-
mercial bimanual robot by Rethink Robotics. Each arm of the robot consists
of seven joints, two on the shoulder, two on the elbow, and three on the wrist.
Physics effects are implemented for the arms to affect objects, making it possible
to perform tasks such as pushing an object using a forearm. The robot “sees”
the simulated world through a camera mounted on its head, which can pan
horizontally. The 3D model and joint configurations of the robot are extracted
from data released by the manufacturer6. A gripper is attached at the end of

6 https://github.com/RethinkRobotics/



each arm, which can act on objects in the environment. The distance between
the two “fingers” of a gripper can be widened or narrowed, so the gripper can
hold or release objects. When a gripper is closing, a simple algorithm is used
to determine if an object should be considered grasped by a gripper based on
the contact points and normals. If so, the object is attached to the gripper and
becomes unaffected by gravity. On the other hand, when the gripper is opening,
any grasped objects are considered released and resume being affected by grav-
ity. For debugging purposes, the software provides additional features such as
manually controlling robot joints and drawing visual markers in the simulated
environment.

2.4 Physical Performance

After a robot controller Matlab program is trained and tested with the simulated
robot, it is straightforward to migrate it to control a real Baxter robot through
ROS and Robot Raconteur7. The latter provides an interface containing methods
to read sensor information, such as joint angles and camera images, and to write
motor directives, such as new joint velocities or positions, in a similar way to our
robot API. Some calibration and parameter tuning is needed to compensate for
the differences between the simulated and the physical worlds, such as different
camera parameters, lighting conditions, or gripper sizes. Simulated physics can
also be different from real physics in complex scenes. It is up to individual
robot learning methods to incorporate these factors to build a more generalized
controller that reacts to environmental variations.

3 Results: An Example

As a first step in validating the virtual demonstrator hypothesis and to provide
an example of our object-centric paradigm, we studied a case of programming
by demonstration that involves a simple block stacking task. Initially, there are
several blocks in three different sizes lying on the tabletop. The demonstrator
manipulates these blocks to build a structure in the simulated environment, and
the process is simultaneously recorded as a demonstration. The goal is for a phys-
ical robot to start with the same set of blocks placed at different initial positions
in the real world, and eventually build the same structure in the same sequence
as seen in the demonstration. This example by no means exhausts all possible
issues one may encounter in studying robot programming by demonstration, but
simply provides a proof of concept: that learning from a virtual demonstrator is
viable, at least in certain situations.

First, an XML file was written to generate the initial scene (Fig. 4; left) for
the demonstrator to work on. The scene contains ten cubic blocks in red or blue,
a 1×1×3 block in blue, and two 1×1×2 blocks in red. A human demonstrator
then manipulates these blocks to build a structure using only mouse inputs and

7 https://robotraconteur.com



Fig. 4. Left: An initial scene as seen by the demonstrator. Right: A different initial
scene for the robot to perform the demonstrated task.

GUI controls. In this specific example the demonstrator builds what resembles
the letters “UM” (for our institution). A demonstration video is recorded during
the demonstration. The demonstrator may elect to undo mistaken actions, in
which case the video is updated accordingly. Figure 5 shows four screenshots
sampled from a single demonstration. In each screenshot, the human demon-
strator acts on the objects in the simulated environment. The demonstrator is
invisible to the robot, and thus the blocks appear to be “flying” around from the
robot’s perspective. Along with the video, symbolic descriptions are generated
to indicate which demonstrator’s hand is being used and the locations of objects,
etc. This symbolic information is optional: a purely vision-based learning system
would be able to estimate the locations of objects without referring to symbolic
information, but here we intentionally keep our Matlab program simple by using
symbolic information to skip some of the complex aspects of image processing.

The physical robot is presented with a new initial scene containing the same
blocks from the demonstration (Fig. 4; right).The initial locations of blocks are
significantly different from what the human demonstrator started with (Fig. 4;
left). In this assessment, the robotic system is learning the intentions/goals of
the demonstrator from a single demonstration, and not memorizing the demon-
strator’s arm trajectories (the demonstrator is invisible as far as the robotic
learner is concerned). Thus the robot must immediately generalize to handling
a new initial state rather than the initial state used by the demonstrator.

The robot imitation learner8 is implemented in Matlab and uses the same
API to communicate with the physical robot and simulated robot. The Matlab
program takes as input the demonstration video (along with symbolic informa-
tion) and the image capture of the new initial scene (no symbolic information is
used). The raw image is “parsed” to determine the locations and orientations of
each block, and encode this information in a symbolic form. The Matlab program
then generates a plan that best matches what is observed in the demonstration

8 We are mainly describing the paradigm here; our robotic learning system will be the
subject of a future paper.



Fig. 5. Screenshots during a demonstration of stacking blocks into the letters “UM”
in the virtual environment. The screenshots are temporally ordered in (1)–(4). In (2),
the ”U” is almost done. In (4), the final piece is going into position.

Fig. 6. The robot’s successful imitation of stacking blocks into the letters “UM”. Pic-
tures are taken in the order of (1)–(4). In (2), arm coordination is being executed as
Baxtor transfers a block from one hand to the other. In (4), the final “UM” is present
(pictures were taken from the opposite side of “UM”).



Fig. 7. The goal state demonstrated in the virtual environment (left) and the one
executed by the robot (right).

video, including the order in which to stack blocks, the colors and sizes of blocks
to be used, the relative positions of blocks in the target structure, and which
arm to use. If no arm is specified in the demonstration, the program chooses
which arm to use in accordance with the new initial scene. The plan is eventu-
ally translated into a sequence of waypoints for the robot arms to reach, which
are then converted to arm joint velocities and passed to the robot for execu-
tion. The execution of the plan is shown in Fig. 6 (sampled screenshots). The
resulting structure the robot built and the procedure in which the robot built it
are qualitatively similar to what the human demonstrated (see Fig. 7), despite
that they were started from different initial conditions. The color arrangement
of blocks are properly imitated, although the blocks sometimes are not perfectly
aligned.

4 Discussion

In summary, we presented an object-centric paradigm for robot programming by
demonstration, in which we postulate that in many cases learning from demon-
stration can be both simplified and made more effective by having the demonstra-
tor be invisible. As such, efforts during learning can be shifted from the difficult
problem of human motion perception and interpretation to more task-relevant
aspects by focusing only on the behaviors of the objects being manipulated. To
this end, a software-based simulated environment was built for creating object-
only demonstrations as well as training and testing robot learners. The resulting
robot agents can then be used to control a real robot. We were able to quickly
develop a block stacking robot imitator without recording or parsing human mo-
tions, and without analyzing human-robot body correspondences and coordinate
transformations. The “UM” task showed that a software-generated object-centric
demonstration can eventually be converted to physical robot actions.

Our method promotes learning based on the effects of actions, i.e., the move-
ments of objects, rather than the actions themselves. In many tasks whose goal
is to create a certain state external to the performer’s body, capturing and un-
derstanding body actions can be difficult and irrelevant. On the other hand,
learning from the effects of actions can potentially result in more goal-driven



action plans. In fact, since a robot’s body configurations are usually very differ-
ent from those of humans, direct learning from a human’s actions is not always
possible and may not result in the same effects. In our current result, although
the human demonstrator used the same hand throughout the task, the robot de-
cided to transfer blocks from one hand to the other (Fig. 6(2)) due to limitations
on which blocks each hand could reach. In this case, imitation strategies that
directly mimic human motions may fail. Moreover, highly sophisticated robots
may benefit from not mimicking human motions. For example, robots with more
arms than humans can potentially complete a task in a way more efficient than
a human’s approach.

The approach we took heavily relies on software simulations. Compared with
physical demonstrations, this simulation-based approach provides a natural way
to completely hide the demonstrator’s body from the robot observer. The lo-
cations and orientations of each object in the simulated world can be obtained
easily, instead of having to attach physical markers to each object and/or the
demonstrator’s body. A simulated environment also reduces human fatigue and
risks, as well as managing mental workload and emotional responses. For exam-
ple, a human can avoid physically demonstrating dangerous tasks in hazardous
environments such as battlefield or underwater. After a robot is trained, it can
potentially work with humans as a team while taking over the most dangerous
parts of a task, which avoids poor performance caused by human fatigue and
critical emotional responses. Furthermore, the simulation abstracts the sizes of
objects, so it is now possible to demonstrate what is normally too large or too
small to demonstrate in the physical world, such as building a bridge or operating
at a nanotechnology level.

The main tradeoff for using our method is that not all tasks can be demon-
strated in the software simulation. It is only applicable to a certain class of tasks
where object behaviors alone matter. Our method cannot be used in situations
where the goal is to mimic human body motions, such as learning a sign lan-
guage, although it is conceivable that it might be extended to such a challenging
task. It does not faithfully capture the trajectory and velocity at which a human
would move an object by hand, due to its using a GUI and mouse inputs which
inevitably restrict all possible trajectories and velocities to a small subset. It is
also not suitable for tasks where the amounts of forces applied to objects are
important, although such information is difficult to present even in a physical
demonstration environment. Moreover, simulating high-precision physics in real
time is generally a hard problem, and thus some simplifications and compromises
must be made to reduce computational costs. This requires extra efforts to be
put in software implementation and inevitably incurs some unrealistic physi-
cal effects in the simulated environment. Currently, our software is limited in
simulating only rigid body physics.

Our future work will focus on developing a neurocognitive system that learns
from object-centric demonstrations in a complex task scene where it is critical
for the robot agent to reason about what happens in a demonstration. We will
expand the types of supported task objects including tools.
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