
A Virtual Demonstrator Environment for Robot
Imitation Learning

Di-Wei Huang∗, Garrett Katz∗, Joshua Langsfeld†, Rodolphe Gentili‡ and James Reggia∗
∗Department of Computer Science,†Department of Mechanical Engineering,‡Department of Kinesiology,

University of Maryland, College Park, MD 20742
Email: {dwh@cs., gkatz12@, jdlangs@, rodolphe@, reggia@cs.}umd.edu

Abstract—To support studies in robot imitation learning, this
paper presents a software platform, SMILE (Simulator for Mary-
land Imitation Learning Environment), specifically targeting tasks
in which exact human motions are not critical. We hypothesize
that in this class of tasks, object behaviors are far more important
than human behaviors, and thus one can significantly reduce
complexity by not processing human motions at all. As such,
SMILE simulates a virtual environment where a human demon-
strator can manipulate objects using GUI controls without body
parts being visible to a robot in the same environment. Imitation
learning is therefore based on the behaviors of manipulated
objects only. A simple Matlab interface for programming a
simulated robot is also provided in SMILE, along with an XML
interface for initializing objects in the virtual environment. SMILE
lowers the barriers for studying robot imitation learning by
(1) simplifying learning by making the human demonstrator be
a virtual presence and (2) eliminating the immediate need to
purchase special equipment for motion capturing.

I. INTRODUCTION

Contemporary robots are built to exhibit a wide range of
behaviors, but in most cases these behaviors must be pro-
grammed in manually. Such programming is time-consuming,
difficult, expensive, and requires highly trained roboticists, yet
the results usually do not generalize well to even moderately
altered tasks, initial conditions, and/or changing environment.
One potential solution is to replace manual programming with
imitation learning [1], [2], or programming by demonstration,
where a robot autonomously observes a human perform a task
(i.e., demonstration) and then attempts to complete the same
task by replicating the observed behaviors (i.e., imitation).
This method potentially could allow almost anyone, including
task experts, with little to no knowledge about robotics to
program a robot in a straightforward fashion. In addition to its
practical motivations in robotics, imitation learning has drawn
increasing interest across several areas, including artificial
intelligence and cognitive and neural sciences (the latter due
to its relation to mirror neuron systems [3]).

Among many others, a key issue of imitation learning is
how an interface between a human and a robot can be designed
to facilitate effective transferring of task-related knowledge
and skills from a human demonstrator to a robot. We will
refer to this interface as the demonstration interface, whose
format is of central importance because it directly determines
what information a robot receives, what the robot can learn
from it, and ultimately how well the robot can imitate. The
demonstration interface affects the human side too, such as
the time and the cost to set up necessary equipment and
environment, as well as the friendliness of the interface for

human demonstrators, especially for those who know little
about robotics.

Existing demonstration interfaces can be classified into two
classes. In the first class, the human demonstrator drives or ma-
nipulates the states of the robot directly, during which the robot
stores the state trajectories for learning. The way in which the
human drives the robot can be kinesthetic teaching, where a
human physically pulls a robot’s arms to complete a task [4],
[5], or teleoperating, where the robot is driven by remotely
located controls [6], [7]. The robot being driven can also exist
in augmented realities [8] or virtual realities [9]. In the second
class of interfaces, the human demonstrator performs the target
task on his/her own without intervening in creating the states
of the robot. The demonstration is captured by a camera and/or
spatial markers that detect human motion, the results of which
are passed to the robot for learning [10], [11]. This method
has been used in conjunction with kinesthetic teaching [12].
However, in many cases human motions on their own are vague
and do not clearly convey the intention of a demonstration. To
remedy this, human motions are usually passed to the robot
furnished with additional information, such as the states of
task-related objects [13]–[15], from which the robot can learn
the relations between hand motions and objects, and speech
descriptions about the motions, from which the robot can learn
the intentions of the motions from symbolic annotations [16].

Although many demonstration interfaces in the past have
emphasized conveying the trajectories of a human’s body parts,
learning from human motions in this way poses a major burden
to the learner as it involves either difficult image processing or
requires special equipments for capturing a human’s movement
and actions. Complex processing is then needed to identify
actions from the recorded motions, and to infer the effects the
actions have on the task-related objects. Further, coordinate
transformations must be learned between the demonstrator’s
and learner’s frames of references. To address these issues, we
are exploring the following alternative scenario:

Virtual demonstrator hypothesis: In many situations,
effective imitation learning of a task can be achieved
when the demonstrator is invisible.

In other words, in contrast to past work that deals with
humans’ physical demonstrations, we hypothesize that for
many tasks, especially those involving a procedure (i.e., a
series of actions conducted in a certain order or manner), most
critical information about a target procedure can be learned
by ignoring the demonstrator and focusing instead primarily
on the behaviors of the objects that are being manipulated,



such as assembling a car and fixing a computer. By making
the demonstrator a virtual presence, one hugely simplifies the
motion tracking and understanding during learning and elim-
inates the coordinate transformation problems involved. This
approach effectively shifts the problem of imitation learning
from human motion understanding (i.e., how to do) to object
behavior understanding (i.e., what to do). While similar ideas
have been considered in a few past studies [13], [14], they
have either used an over-simplified environment (2D simulated
world) or required special equipment.

As a first step towards studying the virtual demonstrator
hypothesis, we present a software simulated environment,
named SMILE (Simulator for Maryland Imitation Learning
Environment), as a means to hide a demonstrator’s body
from a robot learner. The work reported here is mainly about
the software platform SMILE and the virtual demonstrator
hypothesis, as opposed to describing any specific cognitive
robotics approaches to imitation learning. The latter will be
the subject of a future paper. While we do not definitively
prove the virtual demonstrator hypothesis in the current paper,
we do provide a basic proof-of-concept that this hypothesis is
valid in at least some situations and provide support for the
hypothesis. Complementary experiments guided by this current
effort will also help assess this hypothesis.

II. SIMULATOR FOR MARYLAND IMITATION LEARNING
ENVIRONMENT (SMILE)

SMILE is an integrated virtual environment for studying
imitation learning based on the virtual demonstrator hypoth-
esis [17]. In this environment, a task space can be set up
with user-defined task-relevant objects. A demonstrator can
then use mouse inputs to manipulate these objects, the process
of which is recorded as an object-only demonstration “video”
with accompanying description about the states of the objects.
The video can be edited as it is created by undoing unwanted
actions. The demonstrator’s body is not represented in the
demonstration, making the objects appear to be manipulated
by “invisible hands” or move on their own. Finally, a robot
agent learns from the demonstration and can test out the
plans it forms with a simulated robot and objects in the same
environment.

Our initial efforts have focused on creating a tabletop
environment for bimanual object manipulation tasks, one that
is being intensively studied such as in [18]. As a result, SMILE
contains a 3D simulated world where a virtual demonstrator, a
robot, a table, and a variety of task-related objects coexist. An
example view of SMILE is given in Fig. 1, which contains a
3D environment and overlaid GUI controls (Fig. 1; top-right).
The environment can be observed through the demonstrator’s
perspective (Fig. 1; main window) and/or through the robot’s
perspective (Fig. 1; bottom-right). The demonstrator’s view
is freely navigable by a user. Real-time rigid body physics
simulation is included based on the Bullet physics library1.
A user can demonstrate a task by a combination of click-
ing/dragging the objects and using the overlaid graphical user
interface (GUI) system. No special hardware is required.

There are three major ways in which a user can interact
with SMILE (Fig. 2): (a) to demonstrate a task through mouse

1http://bulletphysics.org

Fig. 1. An example view of SMILE. The main screen shows a simulated
environment containing a tabletop and a variety of objects (block, boxes, lids,
strings, etc.), as they are seen by the human demonstrator. The avatar for a
two-armed programmable robot is also embedded in the environment. The
bottom-right corner shows the environment as it is seen by the robot. The
top-right corner shows a sample GUI window. The user can manipulate the
environment, including picking up, moving, rotating, and releasing objects, as
well as changing the viewpoint and creating objects.

Fig. 2. The three primary interfaces of the simulator: (a) the demonstration
interface, (b) the Matlab programming interface, and (c) the XML object
generation interface.

inputs, (b) to program the robot’s behaviors through Matlab
scripts, and (c) to initialize task-related objects through XML.
An application programming interface (API) for Matlab is
provided for programming the behaviors of the simulated
robot, which can act on objects in the environment. This API
can potentially be used to implement and to experiment with
imitation learning methods. The XML interface is provided
to initialize the scenes, i.e., defining objects on the tabletop,
for different tasks and experiments. The following subsections
describe each of these three interfaces of SMILE.

A. Demonstration Interface

A human demonstrator can manipulate the objects through
the GUI using mouse inputs. A demonstration containing
multiple object manipulations can be recorded as a video
(a sequence of images) that is then used subsequently for
training a robot. The demonstration video can be edited by
undoing unwanted actions. For the purpose of testing our
virtual demonstrator hypothesis, the demonstrator is not visible
in the simulated world, and therefore it is not necessary for
the robot to capture and understand human motions or to
transform between coordinate systems. Instead, learning can
be focused entirely on the consequences of the demonstrator’s
manipulative movements in the task/object space. That is, from
the robot’s perspective, the objects in the environment appear
to move on their own.



Fig. 3. The demonstration interface. The red block (right) is currently grasped
by the demonstrator and raised above the tabletop. (a) A restricting plane
perpendicular to the tabletop that guides movement of the grasped object in
the 3D world. The plane can be rotated around the vertical axis to select
different moving paths. (b) A virtual shadow indicating the location of the
object. (c) Sliders that control object rotations around (d) the three primary
axes (color coded).

The demonstrator is conceptually equipped with two ma-
nipulators, or “hands”, which can independently manipulate
two objects. Each hand can manipulate an object by grasp,
move, rotate, and release operations. A manipulation starts
by grasping an object, from which point on the object is
temporarily unaffected by gravity, i.e., it is held by an invisible
hand. A user does so by simply clicking on an object to be
moved. The object can then undergo a series of movements
and/or rotations. The user can move the object by dragging
it using mouse inputs. In Fig. 3, the block on the right side
is grasped and lifted above the tabletop. To guide the user
through moving an object in 3D space using 2D mouse inputs,
a rotatable restricting plane and a virtual shadow is added to the
demonstrator’s perspective (Fig. 3a–b). The object can also be
rotated in the three primary axes using GUI controls (Fig. 3c–
d). Finally, when the object has been moved to a desired
destination and rotated to a desired orientation, it can then
be released by clicking the release button. The object resumes
being affected by gravity after it is released. The demonstrator
can switch between the two hands while manipulating objects.
To manipulate two objects in parallel, the demonstrator needs
to manually interleave the manipulative actions of the two
hands. In the case where the user made an unwanted action, an
undo function is provided to restore the previous world state
and discard the corresponding segment in the recorded video.

While recorded videos are suitable for visual learning,
SMILE also provides an option for symbolic output. That is,
in addition to the video frames, a symbolic description can
be generated in text format describing object properties for
each video frame, such as the shape, color, coordinates, etc.
of each object. This information not only further simplifies
image processing, but also enables researchers to opt to work
at high-level reasoning about what happens in the scene.

SMILE’s demonstration GUI can be readily extended to
allow a demonstrator to specify which properties of a manipu-
lated object are significant (not implemented yet). For example,

when moving an object, the demonstrator can choose from a
list of object properties. If “color” is selected, this information
is passed to the robot learner to direct its internal attention
mechanism towards the color of the object being moved.

B. Application Programming Interface for the Robot

The second interface of SMILE is a Matlab programming
interface for controlling a simulated robot. The interface is
designed such that a user’s Matlab program acts like the
“brain” of the robot. (In this subsection, a “user” refers
to a developer who programs the robot’s imitation learning
behaviors.) That is, a user program receives sensory inputs in
the form of vision (images) and proprioception (joint angles)
information, and provides motor outputs in the form of motor
commands (joint velocities). This framework is intended to
facilitate work on bio-inspired robot controllers.

The robot currently built into this system is modeled after
Baxterr (Fig. 4a), a commercial bimanual robot by Rethink
Robotics. Each arm of the robot consists of seven joints,
two on the shoulder, two on the elbow, and three on the
wrist. Physics effects are implemented for the arms to affect
objects, making it possible to perform tasks such as pushing an
object using a forearm. The robot “sees” the simulated world
through a camera mounted on its head (Fig. 4b), which can
pan horizontally. The 3D model and joint configurations of the
robot are extracted from data released by the manufacturer2.
A gripper is attached at the end of each arm, which can act
on objects in the environment. The distance between the two
“fingers” of a gripper can be widened or narrowed, so the
gripper can hold or release objects. When a gripper is closing,
a simple algorithm is used to determine if an object should be
considered grasped by a gripper based on the contact points
and normals. If so, the object is attached to the gripper and
becomes unaffected by gravity. On the other hand, when the
gripper is opening, any grasped objects are considered released
and resume being affected by gravity.

To program the robot’s behaviors, the user needs to provide
two Matlab scripts: an initialization script and a callback
script. The initialization script is invoked once by SMILE to
initialize user-defined variables. After that, the callback script
is invoked repeatedly at approximately 60Hz (depending on
the computing capacity and complexity of the callback script).
For each invocation, SMILE supplies the callback script with
the robot’s sensory information in a Matlab structure variable
sensor, which contains, for example, time elapsed since last
invocation, current joint angles, current gripper opening, visual
images, and end effector positions. The callback script can then
write to another predefined Matlab structure variable motor
to issue motor commands, which contains joint velocities and
gripper velocities. Additionally, both initialization and callback
scripts can access a Matlab structure aux, which contains
auxiliary information such as the angle range for each joint.

For debugging purposes, manual control of the robot is
provided through GUI panels (Fig. 4c) where a user can
rotate individual joints manually and exert other influences.
Additionally, the aux variable allows the user to draw visual
markers in the simulated environment. They are not visible to

2https://github.com/RethinkRobotics/



Fig. 4. The robot in the simulated world. (a) The 3D model of the robot.
(b) The robot’s view of the simulated world. The images are captured by its
head-mounted virtual camera. (c) GUI controls for manually controlling the
robot.

the robot, do not interact with other objects, and are useful in
highlighting spatial locations in the environment.

C. Object Initialization Interface

The third interface is for initializing and creating objects
in the simulated environment. This interface provides a simple
way to specify scenarios for different tasks and experiments.
Specifically, SMILE can load XML files written in conformance
to a predefined XML schema and then generate objects in
the simulated environment accordingly. The XML schema
defines XML elements for generating simple objects including
blocks, cylinders, spheres, and containers (Fig. 5a–c), whose
size, location, rotation, mass, color, etc., can be specified
using XML attributes. Multiple simple objects can also be
grouped hierarchically, via XML’s hierarchical ordering, to
form composite objects, whose center of mass can be specified.
For example, the hammer shape in Fig. 5d is composed using
three cylinders and a block. Further, more complex objects are
included in the XML schema. A string object is simulated by
connected solid links (Fig. 5e), which, when cut, will fall to
the table (Fig. 5f). A container with a sliding lid can also be
created (Fig. 5g). The lidded box can be positioned to become
a container with a trap door (Fig. 5h).

III. RESULTS: A USAGE EXAMPLE

As a first step in validating the virtual demonstrator hy-
pothesis with SMILE, we show an example of using it during
an imitation learning task that involves a simple block stacking
task. Initially, there are several blocks in three different sizes
lying on the tabletop. The demonstrator manipulates these
blocks to build a structure, the process of which is recorded
as a demonstration video. The goal is for the robot to start
with the same set of blocks in different initial positions, and
eventually build the same structure in the same sequence
as seen in the demonstration. This example by no means
exhausts all possible issues one may encounter in studying
imitation learning, but simply provides a proof of concept:

Fig. 5. Sample objects generated via XML files. (a)–(c) show simple objects:
a block, a cylinder, and a box container. (d) shows a composite object, a
hammer. (e), (f) show a string that when cut dynamically falls onto the table.
(g), (h) show a box container with a sliding lid.

Fig. 6. Left: An initial scene as seen by the demonstrator. Right: A different
initial scene for the robot to perform the demonstrated task.

that learning from a virtual demonstrator is viable, at least in
certain situations.

First, an XML file is written to generate the initial scene
(Fig. 6; left) for the demonstrator to work on. The scene
contains ten unit-size blocks in six different colors, a 1×1×4
block in yellow, and a 1 × 1 × 5 block in brown. A human
demonstrator then manipulates these blocks to build a structure
using only mouse inputs and GUI controls. In this specific
example the demonstrator builds what resembles the letters
“UM” (for our institution). A demonstration video is recorded
during the demonstration, and data structures are created
internally to track object movements. The data structures are
needed to restore environment states retroactively when the
user elects to undo actions. Fig. 7 shows four screenshots
sampled from a single demonstration. In each screenshot,
the human demonstrator acts on the objects in the simulated
environment through the main window, while the bottom-
right corner shows what is being observed by the robot
and recorded as the demonstration video. The demonstrator
is invisible to the robot, and thus the blocks appear to be
“flying” around from the robot’s perspective. Along with the
video, symbolic descriptions are generated to indicate which
demonstrator’s hand is being used and the locations of objects,
etc. This symbolic information is optional: a purely vision-
based learning system would be able to estimate the locations
of objects without referring to symbolic information, but here
we intentionally keep our Matlab program simple by using
symbolic information to skip some of the complex aspects of
image processing.

A second XML file is prepared to initialize a new scene
for the robot to work on (Fig. 6; right). The initial locations
of blocks are significantly different from what the human



Fig. 7. Screenshots during a demonstration of stacking blocks into the
letters “UM” using the GUI and mouse inputs. The screenshots are temporally
ordered in (1)–(4). The main view of each image shows the demonstrator’s
view of the simulated environment. The lower-right corner of each image
shows the robot’s view of the demonstration.

demonstrator started with (Fig. 6; left). In this assessment of
SMILE, one robotic system is learning the intentions/goals of
the demonstrator from a single demonstration, and not memo-
rizing the demonstrator’s arm trajectories (the demonstrator is
invisible as far as the robotic learner is concerned). Thus the
robot must immediately generalize to handling a new initial
state rather than the initial state used by the demonstrator.

The robot imitation learner3 is implemented in Matlab
and communicates with SMILE through the robot’s API. The
Matlab program takes as input the demonstration video (along
with symbolic information) and the robot’s vision of the new
initial scene (no symbolic information is used). The initial
scene is parsed to determine the locations of each block. The
Matlab program then generates a plan that best matches what
is observed in the demonstration video, including the order in
which to stack blocks, the colors and sizes of blocks to be
used, the relative positions of blocks in the target structure,
and which arm to use. The plan is eventually translated into a
sequence of waypoints for the robot arms to reach, which are
then converted to arm joint velocities and passed to SMILE for
robot simulation. The execution of the plan is shown in Fig. 8
(sampled screenshots). What the robot builds is structurally
similar to what the human demonstrator builds, despite starting
from a different initial conditions. The color arrangement of
blocks are properly imitated, although the blocks sometimes
are not perfectly aligned.

IV. DISCUSSION

In summary, we have developed a software simulated en-
vironment, SMILE, for studying robot imitation learning based
on the virtual demonstrator hypothesis, in which we postulate
that imitation learning for many tasks can be simplified and
potentially made more effective by having the demonstrator be
invisible. As such, efforts during learning can be shifted from
the difficult problem of human motion perception and interpre-
tation to more task-relevant aspects by focusing only on the
behaviors of the objects being manipulated. To this end, SMILE

3We are describing only SMILE here; our robotic learning system will be
the subject of a future paper.

Fig. 8. The robot’s successful imitation of stacking blocks into the letters
“UM”. Screenshots are taken in the order of (1)–(4).

provides an intuitive GUI-based demonstrator’s interface that
literally does not embody the demonstrator. Demonstrators are
allowed to manipulate objects in the simulated environment
without special equipment, and the recorded demonstration can
be used for training a robot simulated in the same environment,
where the robot can be programmed using Matlab scripts.
Objects of various types can be created in the environment
with ease using XML. We also showed a usage example where
the robot, programmed in SMILE by simple Matlab scripts, can
imitate a human stacking the letters “UM” using blocks.

The main purpose of SMILE is to provide an intuitive tool
for demonstrating tasks in a simulated environment without the
demonstrator’s body being recorded. This not only allows us
to further investigate the virtual demonstrator hypothesis, but
also is a potential command interface for instructing a physical
robot what to do once an imitating robot agent is in place.
By using a simulated environment, the human demonstrator
can avoid dangerous tasks and hazardous environments, and
thus reduce critical emotional responses. This demonstration
interface requires no special equipment and removes the need
to capture and parse complex human motions, which greatly re-
duces the cost and complexity of a learning system. Compared
with physical demonstration, where a human has to manually
manipulate objects existing either in the physical world or in
a virtual reality, we believe that the GUI introduced by SMILE
can reduce human fatigue by using a keyboard and a mouse.
Furthermore, the interface abstracts the sizes of objects, so it
is now possible to demonstrate in SMILE what is normally too
large or too small to demonstrate in the physical world, such
as building a bridge or operating at a nanotechnology level.

The secondary purpose of SMILE is serving as a testbed
for prototyping robot imitation learning. A simulated robot,
situated in the same 3D world where a human demonstrates
tasks, provides an inexpensive environment for experimenting
with robot learning. Although there are well-known robot
simulators such as Gazebo, OpenRAVE, Webots, etc., they
generally do not support demonstrating and recording task
procedures, and the learning curve is relatively steep. This
can be a barrier for non-roboticists, such as researchers in
general AI and neurocognitive sciences, to study the virtual



demonstrator hypothesis. We chose to build our software
platform to grant ourselves more freedom and to help identify
research issues in this early stage of studying the hypothesis.
Porting SMILE’s core features to a well-known robot simulator
will be one of our future goal.

While SMILE has its advantages, there are tradeoffs when
using SMILE for robot imitation learning. First, a limitation of
SMILE is that it is only applicable to a certain class of tasks
where object behaviors alone matter. SMILE cannot be used
in situations where the goal is to mimic human body motion,
such as learning a sign language, although it is conceivable
that it might be extended one day to such a challenging task.
It does not faithfully capture the trajectory and velocity at
which a human would move an object by hand, due to its
using a GUI and mouse inputs which inevitably restrict all
possible trajectories and velocities to a small subset. It is also
not suitable for tasks where the amounts of forces applied to
objects are important, although such information is difficult to
present even in a physical demonstration environment.

A second limitation arises as simulating physics in real
time is generally a hard problem. Finding an exact solution to
a physics system, especially ones that contain many interacting
objects, is difficult and computationally expensive. Addition-
ally, numerical accuracy is limited, potentially causing spatial
fluctuations in the simulated world. These could possibly
accumulate and be amplified over time and produce unreal-
istic or erroneous physical effects. In theory, one can easily
increase numerical accuracy, but this significantly increases
computation time, and thus may lower temporal resolution
of a physics simulation with standard hardware to a point
where erroneous physical effects can still take place. In order
to maintain adequate temporal resolution, existing physics
simulation software usually opts to limit numerical accuracy
in favor of fast computation. Under these restrictions, SMILE is
currently not well suited for tasks that require high-precision
physics, such as simulating a small screw being put into a
threaded hole and tightened using friction. To simulate high-
precision physics, case-by-case simplifications can be added
to the environment as a workaround. For example, the robot
in SMILE does not grasp an object by friction, but there is
a simple algorithm that makes a one-shot decision, based on
contact points and normals between a gripper and the object,
that whether a grasp of object is successful. If successful,
the object is directly attached to the gripper unless released,
instead of continuously calculating friction between the gripper
and the object. Such a simplification can significantly reduce
computational cost by sacrificing some fidelity to physics.
However, there are situations where even simplifications are
complicated, such as fluid and air dynamics.

Our immediate future work will be interfacing with a
physical robot, such that the physical robot performs in the
real world what a human demonstrates in the simulated world.
This will allow a human to “program” a physical robot
on a computer by virtual demonstration. We will evaluate
the effectiveness of the virtual demonstrator hypothesis more
rigorously in the near future, with user studies and performance
comparisons between robot agents. Another focus will be on
increasing task scene complexity by expanding types of objects
supported by SMILE, as well as their simulated physical effects.
We are particularly interested in adding tool objects that can

act on other objects, such as scissors and screwdrivers.

ACKNOWLEDGMENT

Supported by ONR award N000141310597.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robotics and Autonomous Systems,
vol. 57, no. 5, pp. 469 – 483, 2009.

[2] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” in Springer Handbook of Robotics, B. Siciliano
and O. Khatib, Eds. Springer, 2008, pp. 1371–1394.

[3] E. Oztop, M. Kawato, and M. A. Arbib, “Mirror neurons: Functions,
mechanisms and models,” Neurosci. Lett., vol. 540, pp. 43 – 55, 2013.

[4] B. Akgun, M. Cakmak, J. W. Yoo, and A. L. Thomaz, “Trajectories
and keyframes for kinesthetic teaching: A human-robot interaction
perspective,” in ACM/IEEE Int. Conf. on Human-Robot Interaction,
2012, pp. 391–398.

[5] A. G. Billard, S. Calinon, and F. Guenter, “Discriminative and adaptive
imitation in uni-manual and bi-manual tasks,” Robotics and Autonomous
Systems, vol. 54, no. 5, pp. 370 – 384, 2006.

[6] J. Chen, E. Haas, and M. Barnes, “Human performance issues and
user interface design for teleoperated robots,” IEEE Trans. Syst., Man,
Cybern. C, vol. 37, no. 6, pp. 1231–1245, 2007.

[7] J. Sweeney and R. Grupen, “A model of shared grasp affordances from
demonstration,” in IEEE-RAS Int. Conf. on Humanoid Robots, 2007,
pp. 27–35.

[8] J. Chong, S. Ong, A. Nee, and K. Youcef-Youmi, “Robot programming
using augmented reality: An interactive method for planning collision-
free paths,” Robotics and Computer-Integrated Manufacturing, vol. 25,
no. 3, pp. 689–701, 2009.

[9] R. Martin, P. Sanz, P. Nebot, and R. Wirz, “A multimodal interface to
control a robot arm via the web: a case study on remote programming,”
IEEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1506–1520, 2005.

[10] P. Azad, T. Asfour, and R. Dillmann, “Robust real-time stereo-based
markerless human motion capture,” in IEEE-RAS Int. Conf. on Hu-
manoid Robots, 2008, pp. 700–707.

[11] R. Dillmann, T. Asfour, M. Do, R. Jäkel, A. Kasper, P. Azad, A. Ude,
S. Schmidt-Rohr, and M. Lösch, “Advances in robot programming by
demonstration,” KI - Künstliche Intelligenz, vol. 24, no. 4, pp. 295–303,
2010.

[12] S. Calinon and A. G. Billard, “What is the teacher’s role in robot
programming by demonstration?: Toward benchmarks for improved
learning,” Interaction Studies, vol. 8, no. 3, pp. 441–464, 2007.

[13] J. Aleotti and S. Caselli, “Physics-based virtual reality for task learning
and intelligent disassembly planning,” Virtual Reality, vol. 15, no. 1,
pp. 41–54, 2011.

[14] A. Alissandrakis, C. L. Nehaniv, K. Dautenhahn, and J. Saunders,
“Achieving corresponding effects on multiple robotic platforms: Imitat-
ing in context using different effect metrics,” in Int. Symp. on Imitation
in Animals and Artifacts, 2005.

[15] A. Chella, H. Dindo, and I. Infantino, “A cognitive framework for
imitation learning,” Robotics and Autonomous Systems, vol. 54, no. 5,
pp. 403–408, 5 2006.

[16] P.-F. Dominey, M. Alvarez, B. Gao, M. Jeambrun, A. Cheylus,
A. Weitzenfeld, A. Martinez, and A. Medrano, “Robot command,
interrogation and teaching via social interaction,” in IEEE-RAS Int.
Conf. on Humanoid Robots, 2005, pp. 475–480.

[17] D.-W. Huang, G. E. Katz, R. J. Gentili, and J. A. Reggia, “The maryland
virtual demonstrator environment for robot imitation learning,” Univer-
sity of Maryland, Tech. Rep. CS-TR-5039, 2014.

[18] A. Feniello, H. Dang, and S. Birchfield, “Program synthesis by exam-
ples for object repositioning tasks,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2014.


